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In this study, an analysis of the one-dimensional Eckart and Gaussian barrier scattering problems is undertaken
using approximate quantum trajectories. Individual quantum trajectories are computed using the derivative
propagation method (DPM). Both real-valued and complex-valued DPM quantum trajectories are employed.
Of interest are the deep tunneling and the higher energy barrier scattering problems in cases in which the
scattering barrier is “thick” by comparison to the width of the initial wave packet. For higher energy scattering
problems, it is found that real-valued DPM trajectories very accurately reproduce the transmitted probability
densities at low orders when compared to large fixed-grid calculations. However, higher orders must be
introduced to obtain good probabilities for deep tunneling problems. Complex-valued DPM is found to
accurately reproduce transmitted probability densities at low order for both the deep tunneling and the higher
energy scattering problems. Of particular note, complex-classical trajectories are found to very nearly give
the exact result for the deep barrier tunneling scattering problem, and the complex DPM converges well at
high orders for these thick barrier scattering problems. A variety of analyses are performed to elucidate the
dynamics of complex-valued DPM trajectories. The complex-extended barrier potentials are examined in
detail, including an analysis of the complex force. Of particular interest are initial conditions for complex-
valued DPM trajectories known as isochrones. All trajectories launched from an isochrone arrive on the real
axis on the transmitted side of the barrier at the same time. The computation and properties of isochrones as
well as the behavior of the initial wave packet in the complex plane are also examined.

1. Introduction

Quantum wave packet dynamics can provide considerable
insight into problems of interest in chemical physics such as
photodissociation, barrier scattering, and femtochemical pro-
cesses.1 Traditionally, quantum wave packet dynamics calcula-
tions involved the solution of the time-dependent Schro¨dinger
equation (TDSE) through the use of fixed grids or basis set
expansions. Recently, much work has been focused upon the
development and application of nonlocal quantum trajectory
methods to these problems.2

In 1952, David Bohm3,4 provided a formulation that gave
deterministic quantum trajectories but at the expense of a
nonlocal, state-dependent quantum potential. This was based
on a much earlier pilot wave formulation of quantum mechanics
as provided by Madelung5 and de Broglie.6 Holland7,8 has
provided much interpretation and analysis of quantum hydro-
dynamics. Alternatively, the quantum hydrodynamic equations
of motion can be obtained through a momentum-moment
expansion of the Wigner function in phase space. This work is
based upon early studies conducted by Takabaysi.9 Bughardt
and Cederbaum formulated quantum hydrodynamic equations
of motion for mixed (and pure) states10 as well as for coupled
electronic states.11 This formulation has been extended to
dissipative systems.12

The first viable computational approach to quantum trajectory
dynamics, the quantum trajectory method (QTM), was intro-
duced by Lopreore and Wyatt13 in 1999. The QTM propagates

quantum wave packets through the use of a correleated ensemble
of Lagrangian trajectories (i.e., the grid points travel along at
the velocity of the probability fluid). The QTM requires the
use of function fitting (i.e., moving weighted least squares) to
evaluate the quantum potential at each update. The QTM was
extended to barrier scattering;14 however, the QTM has stability
issues when nodes form in the evolving wave packet. Babyuk
and Wyatt worked on addressing the node problem15,16 and
extending QTM to multidimensional reactive scattering
problems.17-19

There has been recent work on extending quantum trajectories
to problems with many degrees of freedom. Kendrick20 used
arbitrary Lagrangian-Eulerian trajectories and artificial viscosity
to stabilize the propagating wave packet in barrier scattering
processes. This work was subsequently extended to two-
dimensional problems by Pauler and Kendrick21 and eventually
to multidimensional problems as well.22 Poirier and co-workers
have also done much work on the bipolar decomposition of the
wave function in the reconciliation of semiclassical dynamics
with Bohmian dynamics.23-25 Rassolov and Garashchuk26 have
introduced an approximate linearized quantum potential into the
hydrodynamic equations of motion. This served to stabilize the
wave function around nodes. Even greater stability was obtained
by introducing a mixed polar-coordinate space representation
of the wave function.27 This was successfully extended to
nonadiabatic systems.28

The derivative propagation method (DPM) was developed
by Trahan, Hughes, and Wyatt29 as an alternative way to solve
the quantum hydrodynamic equations by propagating individual
quantum trajectories (as opposed to the ensemble required by
QTM). QTM is an exact formulation of the quantum hydrody-
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namic equations of motionsthe constraining factors on the
quality of a QTM calculation are numerical in nature. By treating
these numerical errors carefully one will obtain a solution that
will be very close to the solution obtained by traditional methods
(grid, pseudo-spectral, basis function expansions, etc.). By
contrast, DPM consists of approximate equations of motion, and
it will be seen that increasing the order of the real-valued DPM
does not necessarily lead to the desired convergence properties.
The DPM was extended to phase-space Wigner trajectories
evolving under various master equations (Liouville, Wigner-
Moyal, or Caldeira-Leggett)30,31 and dissipative systems.32,33

The real-valued DPM (RVDPM(n)) produces approximate
quantum trajectories, but these trajectories are not correlated
and can be propagated individually. Low-order DPM was shown
to very accurately predict transmission probabilities in barrier
scattering calculations in certain cases (when the width of the
scattering potential barrier is greater than the width of the initial
wave packet). However, very high orders must be used to obtain
accurate results around nodes, and this presents numerical
problems. By combining the initial value representation with
the DPM, Bittner34 was able to make observations concerning
the utility of DPM with regards to certain types of problems.
The DPM has been extended to high-dimensionality (10 degrees
of freedom) barrier scattering problems.35

Recently, there has been interest in developing solutions to
the complex-extended Hamilton-Jacobi equation for quantum
mechanical problems. For stationary states, John36 introduced
complex trajectories in his analysis of the Hamilton-Jacobi
equation. Yang has presented quantum trajectory solutions for
the hydrogen atom,37 the electronic spin motion,38 the harmonic
oscillator,39 and tunneling dynamics.40 Yang’s solutions, how-
ever, require an analytic form of the wave packet at each step
and thus are only applicable to situations in which the exact
quantum mechanical solution is known a priori. Recently, Chou
and Wyatt have presented a method for solving the complex
Hamilton-Jacobi equation utilizing the Mobius propagation
scheme. Excellent results were obtained for one-dimensional
bound states41 and scattering problems.42,43 Boiron and Lom-
bardi44 ran complex semiclassical complex trajectories in 1998
that were successfully tested for some analytic as well as
numerical cases. Recently, Goldfarb, Degani, and Tannor used
the DPM to solve equations of motion for trajectories that had
been extended to the complex plane.45 This complex-extended
DPM, denoted as CVDPM(n), was shown to very accurately
reproduce barrier transmission probabilities at low orders, even
for the deep barrier tunneling case. Perhaps the most interesting
result of this study is that a very good approximation to the
deep barrier tunneling probability is obtained with classical
complex trajectories!

In this study, both RVDPM(n) and CVDPM(n) will be applied
to model barrier scattering problems employing either an Eckart
or a Gaussian barrier and an initial Gaussian wave packet. The
initial wave packets in these calculations will have either zero
initial energy, denoting a deep barrier tunneling problem (DT),
or an initial energy equal to the barrier height, which is termed
high-energy (HE). Various properties of CVDPM(n) trajectories
will then be examined. Of concern here is the method by which
the appropriate initial conditions are chosen, the complex
extension and influence of the potentials, and the behavior of
CVDPM(n) trajectories in the complex plane for several orders
of DPM.

In the next section, relevant equations of motion for both
RVDPM(n) and CVDPM(n) trajectories will be presented and
discussed. Then, in section 3, implementation issues, compu-

tational methods, and the model problem involving Eckart and
Gaussian potentials will be discussed. Section 4 presents relevant
results for both DT and HE scattering from Eckart and Gaussian
barriers as well as analysis of some complex quantum trajec-
tories. Finally, concluding remarks will be given in section 5.

2. Theory

2.1. Real-Valued Quantum Trajectories.In this section,
the real-valued DPM equations of motion will be derived and
discussed in both the Eulerian and the Lagrangian frames. A
discussion of the conservation of weights on real-valued
quantum trajectories will follow. Equations for CVDPM(n) will
be derived and discussed in subsection 2.2, in both the Eulerian
and the Lagrangian frames. Finally, this section will close with
an analysis of CVDPM(2) trajectories.

Equations of motion for real-valued quantum trajectories are
obtained by first performing a polar decomposition of the wave
function, via the ansatz

In eq 1,S(x,t) is the real-valued action function, andC(x,t) is a
real-valued function that is related to wave function density via
F(x,t) ) |ψ(x,t)|2 ) exp(2C(x,t)). Substituting eq 1 into the
TDSE and separating the resulting equation into real and
imaginary parts yield two coupled equations. The first is the
quantum Hamilton-Jacobi equation

whereQB represents the nonlocal Bohm quantum potential

The second equation is the continuity equation

In all equations, subscript notation is used for spatial partial
derivatives

whereq ) x for real-valued trajectories andq ) z for complex-
valued trajectories. These equations are cast in the Eulerian form
(the grid points are stationary).

To obtain equations of motion for trajectories, it will be
necessary to transform the Eulerian equations into the Lagrangian
frame via the transform

whereV is the flow velocity. Taking the de Broglie guidance
condition,p ) S1, the flow velocity becomes

Ψ(x,t) ) exp(C(x,t) + i
p

S(x,t)) (1)

∂S(x,t)
∂t

+ 1
2m

S1
2 + QB + V ) 0 (2)
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2m
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2] (3)
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Substituting eqs 2 and 4 into eq 6 and using eq 7 yield
Lagrangian equations for the evolution of the action

and theC-amplitude

One way to propagate the trajectories described in eqs 8 and
9 is to employ the QTM.2,13 In essence, this involves the
propagation of a correlated ensemble of trajectories. At each
time step, fitting techniques (such as least squares) can be
employed to compute the spatial derivatives of theS and C
functions to update the trajectory position and density. In this
way, quantum nonlocality is explicitly introduced into the
trajectory dynamics. However, as the trajectories evolve, any
semblance of an ordered grid quickly disappears. While suc-
cessful in a variety of problems, the QTM is usually compu-
tationally intensive.

Alternatively, the DPM can be used to derive an exact set of
equations of motion for the spatial derivatives of theC andS
functions. The spatial derivatives ofSandC will be propagated
along individual trajectories, and the need for fitting is removed.
The DPM equations are obtained by spatially differentiating both
sides of each Eulerian equation, eqs 2 and 4:

and

These equations transform to the Lagrangian frame as

and

The first term on the right-hand side of eq 12 is the Bohm
quantum force,-∂QB/∂x. Note that eqs 12 and 13 exhibit both
down-coupling to lower-order derivatives and up-coupling to
higher-order derivatives, making these equations and ones for
the higher-order derivatives an infinite but exact hierarchy.
Eulerian equations for RVDPM(2) can be derived by taking
the spatial derivative of eqs 10 and 11

and

These equations transform to the Lagrangian frame as

and

Notice the up-coupling to higher-order derivatives in eqs 16
and 17.

Equations 12, 13, 16, and 17 will constitute a closed set of
equations if spatial derivatives of theC-amplitude andS of
orders greater than 3 vanish. Following this procedure, Lagrangian
equations for any order of real-valued DPM can be obtained
through the following infinite system of equations

and

To make progress with the infinite hierarchy of equations,
assume that theC and S functions are smooth enough to be
approximated in the vicinity of a trajectory by polynomials

and

whereê denotes the displacement from a trajectory at timet.
Assuming quadratic expansions (K ) L ) 2) for bothC andS,
substituting into eqs 2, 4, 10, 11, 14, and 15, and lettingê f 0
give six coupled equations that are exactly the same as eqs 2,
4, 10, 11, 14, and 15, only these equations lack spatial
derivatives ofC and S greater than order 2. This shows that
truncation of the derivative hierarchy is equivalent to assuming
some level of polynomial smoothness for theC and S fields.
Lagrangian equations for any RVDPM(n) can be obtained by
working out the terms in eqs 18 and 19 and setting to zero all
spatial derivatives ofSand theC-amplitude with orders greater
thann.

From the preceding arguments, it is seen that the DPM is a
generalization of earlier studies conducted by Heller46 on the
use of frozen or thawed Gaussians in time-dependent semiclas-
sical scattering processes, known as Gaussian wave packet
dynamics (GWPD). The difference, however, is that the DPM
can approximate theC and S fields along each trajectory to
quadratic and higher orders whereas Heller’s studies employed
equations of motion for parameters in a Gaussian that ap-
proximated the global wave packet. Several methods that employ
multiple Gaussians propagating along classical trajectories will
also be mentioned. Shalashilin and Child have developed a
method that employs multiple nonorthogonal traveling frozen
Gaussians that are sampled by a Monte Carlo procedure.47-49

This method has been applied to tunneling problems.48 In
addition, Martinez et al.50-52 have developed the multiple
spawning method wherein additional frozen Gaussians following
classical trajectories are used to augment the basis set where
they are needed to account for tunneling and nonadiabatic

dS(x,t)
dt
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transitions. Much earlier studies by Metiu et al.53 involved
expansion of the wave packet in a swarm of thawed traveling
Gaussians.

A few comments can be made about RVDPM(n) trajectories.
First, note that these trajectories can be computed individually,
and the need for functional fitting has been circumvented by
propagating the approximate spatial derivatives ofC andSalong
each trajectory. However, due to the up-coupling to higher-
order spatial derivatives in the derivative propagation equations,
the quantum potential will rarely be exactly specified along the
trajectory. Higher orders of RVDPM(n) bring in improved
approximations to the quantum potential and allow the trajectory
to “sense” how theC andS fields are behaving in the vicinity
of the trajectory. In this way, DPM can be thought of as
introducing a regional nonlocality around each propagating
trajectory. However, because the equations of RVDPM(n) are
usually truncated at low order, the reach of this regional
nonlocality is limited. High orders of RVDPM(n) are needed
to allow distant features to affect the motion of the approximate
quantum trajectory.

It is not necessary to propagate a large number of trajectories
in a real-valued DPM calculation to obtain the transmission
probability. The time-dependent transmission probabilityP(t)
of a wave packet through a barrier can be obtained via

wherewi represents the trajectory weight54 defined as

where δxi represents a volume element. This weight is a
conserved quantity,54 as required by the continuity equation,
eq 9. Recasting the weights in terms of the initial trajectory
densities yields

Substitution of eq 24 into eq 22 immediately shows that
transmission probabilities can be computed only from the initial
wave packet densities if one also knows which trajectories

transmit the barrier. As shown in Figure 1, there is a definite
bifurcation point for each time such that trajectories initially
launched from the right of the bifurcation point will be
transmitted while trajectories launched from the left will be
reflected. Integrating the probability density obtained from the
initial Gaussian wave packet from this bifurcation point forward
will yield an area that is equivalent to the transmission
probability at that time, in accordance with eq 22. Only a few
transmitted trajectories need to be evaluated to locate the
bifurcation point.

2.2. Complex-Valued Quantum Trajectories.Schrödinger
recognized that the actionS found in the Hamilton-Jacobi
equation should be regarded as a complex quantity.55 (He was
motivated to make this change in an effort to consolidate both
S andF into a single function.) Lettingz ) x + iy represent a
point in the complex plane, we can express the complex-valued
wave function in terms of a complex actionA(z,t) via the ansatz

Inserting eq 25 into the TDSE yields a single complex equation

which is a complex version of the quantum Hamilton-Jacobi
equation. (For an introduction, see section 4.2.3 in Tannor’s
text.56) In this equation,QC represents a nonlocal complex
quantum potential given by

The de Broglie guidance condition, eq 7, is assumed valid, thus
making the momentum complex.U(z) is the continuation of
the potential to the complex plane. The Lagrangian form of the
complex quantum Hamilton-Jacobi equation can be obtained
by substituting eq 26 into eq 6 and employing the guidance
condition, thus giving

Figure 1. Integration of the initial Gaussian wave packet density fromx(ta) forward yielding an area that is equal to the transmitted probability
density at timeta. The shaded region ofΨ2(0) represents the starting location of all trajectories that have transmitted the barrier at the arrival time
ta.

P(t) ) ∑
i,products

wi(xi(t),t) (22)

wi(xi(t),t) ) F(xi(t),t)δxi (23)

wi(xi(t),t) ) wi(xi(0),0)) F(xi(0),0)δxi (24)

Ψ(z,t) ) exp( i
p
A(z,t)) (25)

∂A(z,t)
∂t

+ 1
2m

A1
2 + QC + U ) 0 (26)

QC ) - ip
2m

A2 (27)
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) 1
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A1
2 - U + ip
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In effect, the Lagrangian transformation allows grid points to
travel along complex quantum trajectories. The time-dependent
wave function evaluated along the trajectory is given by

with dA/dt given by eq 28. The density along the trajectory can
be obtained through the relationF(z,t) ) exp(-2/p Im(A(z,t))).

The derivative propagation method will again be employed
to approximately solve eq 26. Note that, as in the real-valued
case, the evolution equation forA requires the first- and second-
order spatial derivatives ofA to evaluate the expression.
Evolution equations for these functions can be obtained by
taking the first and second spatial derivatives of eq 26

and

Subsituting eqs 30 and 31 into eq 6 and employing the guidance
condition give equations of motion in the Lagrangian frame

and

The first term on the right-hand side of eq 32 is the complex-
valued and nonlocal quantum force,-∂QC/∂z. This quantum
force is not the same function that appears on the right-hand
side of the Bohmian equation, eq 12. For example, the Bohmian
quantum force is anti-Hook’s law (linear in displacement from
the center and expansive) for a Gaussian wave packet, but the
force term given by-∂QC/∂z vanishes. (Classical trajectories
provide the exact propagation for the packet in the latter
formulation.) The form of the quantum force in eq 32 may be
the prime reason that low-order DPM calculations give excellent
results for some barrier transmission problems (as described later
in this study).

Lagrangian equations of any order can be generated using
the following equation

It was precisely CVDPM(n) that Tannor and co-workers45

employed in their complex-valued trajectory study. A discussion
of the correspondence between RVDPM(n) and CVDPM(n) is
provided in the Appendix.

A brief examination of eqs 28 and 32 is in order. The right-
hand side of eq 32 represents the components of force acting
upon each trajectory. The local (or classical) force is contained
in the derivative of the potential, while all quantum forces are
represented by thep-dependentA3 term. Focusing upon second-
order DPM leads to trajectories with purely Newtonian (albeit
complex) motion, as theA3-dependent quantum force will be
zero. The trajectory is guided through completely local informa-
tion contained in the derivative of the complex-extended

“classical” potential. Note, however, that eq 28 includes a
nonlocal quantum energy termA2. The CVDPM(2) equation for
A2

includes both local information (from the derivative of the
complex potential) and nonlocal information (through the
derivative ofA this information is considered to be nonlocal as
it depends on the state of the entire wave function). This serves
to introduce nonlocality into eq 28 and consequently into
eq 29, which accumulates the appropriate quantum phase for
wave function synthesis at each time step. In effect, CVDPM-
(2) trajectories are classical trajectories traveling in the complex
planesquantum information is only manifested thorough the
quantum potential appearing in the action function.

Equation 33 shows that the trajectory will no longer exhibit
classical motion for CVDPM(3), as an approximation to the
quantum force influences the trajectory motion. This has an
interesting effect on the interpretation of tunneling in the
complex plane. CVDPM(2) trajectories are classical in the sense
that only local information provided by the potential is used to
propagate the trajectory. These trajectories are ones that make
it over the top of the barriersthey do not “go through the
barrier”. However, each CVDPM(2) trajectory is carrying a
density that ultimately will make it to the real axis at the arrival
time and be “detected”. The net effect of this density transport
on the complex-classical trajectory is to make it appear as if
the low-energy initial wave packet “tunnels” through the
classically forbidden region and appears on the transmission
side of the barrier.

Interestingly, the CVDPM(2) equations appeared in the
literature before the recent publication by Tannor et al.45 In
generalizing earlier work with GWPD, Huber and Heller57

extended the classical trajectories into the complex plane and
in effect generated the equations of motion for CVDPM(2)
trajectories. Subsequent collaboration with Littlejohn58 provided
deeper mathematical insight into these trajectories. Again, as
in the case of RVDPM(n), our formulation has the advantage
in that we approximateA(z,t) in a quadratic or higher-order
expansion along each propagating trajectory, as opposed to a
global “thawed” Gaussian. de Aguiar and co-workers59 expanded
upon this work by Heller by deriving additional approximations
to replace the complex trajectories with real trajectories. These
studies are semiclassical; it is important to remember that the
infinite heirarchy of DPM equations of motion is exactly
quantum.

3. Model Scattering Problem and Computational
Methods

In this section, the initial wave packet and the two potentials
are described. The implementation of both RVDPM(n) and
CVDPM(n) trajectories will also be discussed. Finally, for
comparison with the trajectory results, a space-fixed grid method
for solving the TDSE for these scattering problems will be
mentioned. All calculations were run to the arrival timeta )
1.5. Unless otherwise stated, all quantities are in atomic units.

The initial conditions on individual trajectories were deter-
mined from a Gaussian wave packet of the form

Ψ(z,t) ) exp{ i
p[A(zo,0) + ∫0

t dA(z,τ)
dτ

dτ]} (29)

∂A1

∂t
) - 1

m
A1A2 + ip

2m
A3 - U1 (30)

∂A2

∂t
) - 1

m
(A2

2 + A1A3) + ip
2m

A4 - U2 (31)

dA1

dt
) ip

2m
A3 - U1 (32)

dA2

dt
) - 1

m
A2

2 + ip
2m

A4 - U2 (33)

dAn

dt
) - 1

2m
[(A1

2)n - ipA2+n] + 1
m

A1A1+n - Un (34)
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) - 1
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2 - U2 (35)
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exp(-â(x - xo)
2 +

ipo

p
(x - xo)) (36)
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This function is normalized on the real axis. Following Tannor
et al.,45 we choose the width parameterâ ) 30π, the center of
the wave packetxo ) -0.7, and the initial momentum eitherpo

) 0 (DT case) or 48.9 (HE case). Initial conditions for complex
trajectories were obtained by analytically continuing eq 36 into
the complex plane.

Obtaining the initial functional values required for the time
integration of the RVDPM(n) trajectories is straightforward.
Equating the right-hand sides of eqs 1 and 36 and separating
into real and imaginary parts lead to functions that give the
initial values ofC(x,t) andS(x,t) in terms of the parameters in
eq 36 for any given selected initialx value.

Obtaining initial functional values for CVDPM(n) is a more
difficult task. Equating the right-hand sides of eqs 25 and 36
leads to a single equation that returns the initial value ofA(z,t)
with regard to the parameters in eq 36 and the initial coordinate
z. For CVDPM(n), one obtains the initial coordinatesz by
merely discretizing the complex extension of the initial wave
packet. However, both the real and the imaginary parts ofz are
discretized to obtain the initial condition. Trajectories with the
same initial real part but different imaginary parts in their
complex positions will have drastically different behaviors. The
trajectories of interest will be those that have positiony ) 0 at
the specified arrival time andx > 0 for the transmitted subset.
The imaginary component of the complex initial position has a
direct effect on both the time and the position where these
trajectories cross the real axis. The set of initial complex
positionsz that satisfy the above condition will comprise a curve
in the complex plane called an isochrone. Any trajectory
launched from an initial position on that isochrone will land
somewhere on the real axis (x > 0, y ) 0) at the specified arrival
time. Properties of isochrones will be discussed further in section
4.2.

The potentials used for both the real and the complex
trajectory calculations are either an Eckart barrier of the form

where the barrier height isVo ) 40 and the barrier width
parameter isR ) 4.32 or a slightly slimmer Gaussian barrier
of the form

where againVo ) 40 and the width parameter isγ ) 15.35.
Both barriers are centered atz) 0. The two potentials evaluated
on the real axis are shown in Figure 2, while the real and
imaginary parts of the complex-extended Eckart potentials are
shown in Figures 3a and 3b, and the real and imaginary parts
of the complex-extended Gaussian potential in Figures 4a and
4b, respectively.

Figure 2 shows that we are dealing with a “thick” barrier
scattering problem, in that the half-width of the initial Gaussian
wave packet is slim compared to the width of the scattering
Eckart and Gaussian potentials. Thick barrier quantum scattering
problems typically display transmitted probability densities that
are similar to those produced by the propagation of the
corresponding Wigner wave packet in phase space with the
classical Liouville equation. Alternatively, one can obtain
classical transmitted probability densities in phase space by
integrating the initial Wigner wave packet forp g pb, wherepb

represents the barrier momentum. An example of the similarity
of phase-space classical and quantum barrier transmission
probabilities is presented by Rowland and Wyatt.60 Thin barrier
scattering problems will have solutions that depend much more
strongly upon the quantum potential and are not reproduced
nearly as well with classical phase-space methods.

Given the Cauchy-Riemann condition61 for the complex-
valued functionf(x + iy), i ∂f/∂x ) ∂f/∂y, we can determine
whether or not the potentials given in eqs 37 and 38 are analytic.
The Cauchy-Riemann condition is seen to hold for the Gaussian
potential in eq 38 in the domain of the finite complex plane.
Hence, this complex-extended potential would be termed
holomorphic;61 that is, the potential has no singularities and is
differentiable at every point in the finite complex plane.
Application of the Cauchy-Riemann condition to eq 37 shows
that the complex-extended Eckart potential is meromorphic;61

Figure 2. Real-valued Eckart (in blue) and Gaussian (in green) potentials used in this study. The magnitude of the initial Gaussian wave function
(solid red) is also shown to compare the relative width of the wave packet to the barrier width. For the purposes of this figure, the peak value for
|Ψ(x)| was adjusted to be the same as the barrier height.

V(z) )
Vo

cosh2(Rz)
(37)

V(z) ) Vo exp(-γz2) (38)
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that is, it is analytic in the finite complex plane at all but some
isolated points. These isolated points (albeit countably many)
are the poles of the complex-extended Eckart potential. These
poles, at the centers of the cloverleafs along the imaginary axis
in Figures 3a and 3b, are located at

wherem ) (1, (2, ... The two poles of principal interest are
located atz ) (0.3636i. Later, it will be seen that complex
trajectories are forced to avoid the poles in the complex-extended
Eckart potential. Very interesting behavior is also obtained for
complex trajectories evolving on the complex-extended Gaussian
potential.

An examination into the nature of the poles in the complex-
extended Eckart potential is in order. Specifically, we would
like to examine the behavior of the potential in the vicinity of
the pole as well as explain the four-lobed structures and
associated signs that appear in Figures 3a and 3b. One way to

approach this problem is to expand the complex-extended Eckart
potential about a pole using a Laurent series.62 A Laurent series
can be thought of as an extension of the Taylor series to complex
functions that are meromorphic. Unlike the Taylor series, which
only employ positive powers in the power series expansion, a
Laurent series may employ negative powers in the expansion

where the expansion coefficientsan are given by Cauchy’s
integral formula. Performing a Laurent expansion on eq 37 about
the node located atzo ) -iπ/2R gives

Figure 3. Complex-extended Eckart potential: (a) real part; (b) imaginary part.

z ) mπ
2R

i (39)

f(z) ) ∑
n)-∞

∞
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where the first term in eq 41 is known as the principle part of
the function. Notice that a holomorphic function will have no
principle part.

Determining the order of the pole is a simple matter with
eq 41; all one must do is look to the principle part of the Laurent
expansion. In this example, we see that the poles of the complex-
extended Eckart barrier are of second order (this means that
the residue about the poles will be zero); these poles are neither
simple poles (poles of order one, also known as removable
singularities) nor are they essential singularities (which would
have an infinite number of terms in its principle part). The
principle part of the Laurent series describes the behavior of
the function in the vicinity of the pole. As one approacheszo

only the principle part of the expansion contributes, up to an
additive constant. Simply put, (z - zo) ) Reiθ (the expression
of a complex number in polar form). Combining the above
expression with the principle part of eq 41 gives

Plotting the real and imaginary parts of this function will
reproduce the four-lobed “quadrapole” structures as well as the
signs on those lobes in agreement with Figures 3a and 3b.

A similar analysis can be carried out for the Gaussian
potential. Making the subsitutionz ) 1/t in equation eq 38 and
performing a Taylor series expansion yields

Bearing in mind that asz f (∞, t f 0, so the function is not
defined at(∞. These will be singularities in the Gaussian
potential. The expansion in eq 43 tells us that these singularities
will be isolated essential singularities61 as the principle part of
its expansion has an infinite number of terms.

Holomorphic and meromorphic (excluding poles) functions
have very interesting properties that cast a different flavor on
CVDPM(n) trajectories. If a functionf(z) is holomorphic both
inside and on a simple closed contourC in the complex plane,
then the generalized Cauchy integral formula guarantees the

Figure 4. Complex-extended Gaussian potential: (a) real part; (b) imaginary part.
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existence of the derivatives (including partials) off(z) of all
orders.62 These derivatives will be continuous both on and inside
the contourC. No similar statement can be made for real
functions.

The Cauchy integral formula also states that the value off(z)
at any pointz inside the closed contourC will be determined
by the values of the function alongC. This is very interesting
in the context of complex DPM trajectories. Complex DPM
trajectories can “sense” the behavior of their neighbors through
a regional nonlocality. The potentials and the evolving wave
packet remain holomorphic as long as they stay in the finite
complex plane (both Eckart and Gaussian potentials) and avoid
poles (Eckart potential only). This means that the value of the
wave packet at any pointz in the complex plane is determined
solely by the values of the wave packet on a closed contour. In
other words, the value of the functionf(z) depends on informa-
tion at other points (i.e., nonlocality). This may explain why
low orders of CVDPM(n) can yield very accurate barrier
transmission probabilites.

Equations of motion for both RVDPM(n) and CVDPM(n)
trajectories were implemented by integrating the system of
differential equations in time with the second-order implicit
trapezoidal method.63 This method is both symmetric and self-
adjoint, which ensures time reversibility. DPM equations for
barrier scattering problems can become stiff in regions where
the derivatives of the action may become large (i.e., near a pole).
Stating that a system of differential equations is stiff generally
means that the dynamical processes being modeled are evolving
under multiple time scales.64 Another way to think of stiffness
is that the largest allowable step size taken is determined by
the system’s stability rather than the accuracy. The implicit
trapezoidal method was chosen to integrate this system of
differential equations because it is a relatively easy method to
implement and is known to handle stiff systems of differential
equations well. Solving this system of nonlinear equations
requires the use of functional iteration or Newton’s method. In
this study, functional iteration was used with the initial guess
given by the first-order explicit Euler method. Three functional
iterations were sufficient at each time step. In both RVDPM(n)
and CVDPM(n), the integration time step was∆t ) 1 × 10-4.

To solve the TDSE on a grid,64,56 the method of lines63 was
employed with fourth order centered finite differencing to obtain
a system of differential equations that was integrated using the
second-order leapfrog method.63 The leapfrog method is not
symplectic, however. This was not a problem in this study, as
the normalization on the entire grid remained accurate to 10-5

for the length of the calculation. The grid calculation used to
solve the TDSE was performed with∆t ) 1 × 10-4 and∆x )
5 × 10-3.

4. Computational Results

4.1. Transmission Probabilities.In this section, transmission
probabilities will be presented for RVDPM(n) and CVDPM(n)
trajectories for both the Eckart and the Gaussian barrier
scattering problems. This will be followed by results and
discussion for classical complex trajectories (CVDPM(2)).
Determining how initial conditions are implemented into
CVDPM(n) is discussed in subsection 4.2. Finally, some
interesting properties of complex quantum trajectories will be
explored.

Table 1 lists transmission probabilities for real-valued DPM
trajectories for the DT Eckart and HE Gaussian scattering
problems. There are some points of note here. First, it appears
that the appropriate order of real-valued DPM can give

transmitted densities that are close to the exact grid solution.
In the case of the HE Gaussian scattering problem, orders 2, 3,
and 4 give results that are in good agreement with the exact
grid results, whether the final probability is computed by actually
interpolating the transmitted wave packet density and integrating
or by locating the bifurcation point and integrating the initial
probability density. However, it is interesting to see that the
probabilities for real-valued DPM do not appear to converge
smoothly as the order is increased. Similar trends are noted for
the HE Eckart scattering problem. Figure 5a shows HE Eckart
transmitted probability densities for orders 2 and 3 for real-
valued DPM. RVDPM(2) and RVDPM(3) reproduce the exact
grid solution. As the order of the DPM is increased to orders 4
and 5, the integrated probabilities correspond quite well with
the numerical probabilities provided by the fixed-grid solution.

The DT Gaussian scattering problem shows different char-
acteristics. First, accurate solutions require higher orders of DPM
than the corresponding HE case. Figure 5b shows DT Gaussian
transmitted probability densities for orders 8-12 of RVDPM.
There appears to be an oscillation about an average value, with
even orders of RVDPM slightly overestimating the probability
and odd orders being just about right.

Figures 6a and 6b show corresponding CVDPM(n) transmit-
ted probability densities for orders 2, 3, and 4 for the same
scattering problems as presented in Figures 5a and 5b. Initial
positions for these trajectories are specifically chosen so that
they transmit the barrier (x > 0) and are detectable (y ) 0) at
the arrival time ta ) 1.5. Figure 6a shows the transmitted
densities for the HE Eckart barrier scattering problem for orders
2-4. This figure shows that orders 2, 3, and 4 perfectly capture
the grid solution, with no detectable decay in the quality of
solution. Figure 6b shows the transmitted densities for the DT
Gaussian barrier scattering problem for orders 2-4. Note that
orders 3 and 4 capture the solution exactly. Although CVDPM-
(2) does not quite capture the exact solution, we need to recall
that CVDPM(2) trajectories are in fact complex-valued classical
trajectories transporting an approximate quantum action function
(through the inclusion of the nonlocal term in eq 28). In essence,
these trajectories appear to tunnel through the barrier, when in

TABLE 1: Transmission Probabilities for RVDPM and
CVDPM Barrier Scattering Problems

order of DPM probability

DT Eckart Real Valued
5 2.79× 10-7

6 3.77× 10-7

7 3.11× 10-7

8 3.34× 10-7

9 3.19× 10-7

fixed grid (exact) 2.90× 10-7

HE Gaussian Real Valued
2 0.504740
3 0.503410
4 0.500900
5 0.487960
6 0.419330
fixed grid (exact) 0.502366

DT Eckart Complex Valued
2 2.77× 10-7

3 2.90× 10-7

4 2.90× 10-7

fixed grid (exact) 2.90× 10-7

HE Gaussian Complex Valued
2 0.503070
3 0.507320
4 0.501710
fixed grid (exact) 0.502366
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reality they are following classically proscribed paths through
the complex plane while transporting approximate quantum
density. Increasing CVDPM to order 3 adds an approximation
to the quantum force to the classical force when computing the
trajectory. Note that the CVDPM(n) solutions remain in
agreement with the grid solution through order 4. Similar
accuracies and trends are noted in the DT Eckart problem and
in the HE Gaussian problem. CVDPM(n) was run through order
6 for these four problems with no decay in the solution quality.

4.2. Isochrones.Figure 7 shows nine CVDPM(2) trajectories
(blue curves) for the arrival timeta ) 1.5. Also shown are
contour lines for the absolute value of the complex-extended
Eckart potential. These trajectories are launched from a curve
in the complex planesthe isochrone. Some of the characteristics
of isochrones will now be considered. Figure 8a shows the
isochrones for the DT Eckart scattering problem for CVDPM(n)

orders 2, 3, and 4. Notice that the isochrones traverse only a
small portion of the complex plane. The order 2 isochrone
converges on thex-coordinate of the center of the initial wave
packet (xc ) -0.7) but does not extend to values ofx that are
less than this. This point represents the initial coordinate of the
last detectable, transmitted complex trajectory. Increasing the
order to CVDPM(3) changes the isochrone in two ways. First,
each point is shifted down in the imaginary direction. Since
these trajectories will be traveling farther than corresponding
CVDPM(2) trajectories and they still need to reach the real axis
at ta ) 1.5, they need to traverse this distance faster. To
understand this further, one must understand how the real and
imaginary components of the complex-extended potential are
manifesting themselves upon the trajectory, which will be
examined later in subsection 4.4. Second, unlike CVDPM(2)
trajectories, it is seen that higher-order isochrones extend to the

Figure 5. RVDPM(n) transmitted probability densities atta ) 1.5: (a) HE Eckart barrier densities forn ) 2 (blue), 3 (red), and grid (dark green)
solutions; (b) DT Gaussian densities forn ) 8 (orange), 9 (green), 10 (red), 11 (purple), 12 (brown), and grid (dark blue).

Analysis of Barrier Scattering J. Phys. Chem. A, Vol. 111, No. 41, 200710243



left of the center of the initial wave packet. These trajectories
have different properties than those launched withx > -0.7.
These trajectories will be analyzed further in subsection 4.4.

Figure 8b shows similar behavior to that found in Figure 8a,
but for HE scattering from the Eckart barrier. It is interesting
to note that all three isochrones converge on the real axis, but
at different locations. CVDPM(2) trajectories exhibit the same
convergence at the center of the wave packet as seen for the
DT Eckart scattering problem in Figure 8a. CVDPM(3) and
CVDPM(4) lead to very nearly the same isochrone. Isochrones
for initial energies between DT and HE barrier scattering will
lie between these extremes. Isochrones for both the DT and the
HE Gaussian barrier problems show similar placements and
trends as the Eckart cases. It is interesting to note that the
isochrones appear to converge for orders 3 or 4 for all cases.

Obtaining the locations of the isochrones proves to be the
most difficult part of implementing CVDPM(n). Initial coor-
dinates were obtained by taking a slice for a constant value for
y and selectingx to be between 0 andxo. This will yield initial
values forA(z,t) and its spatial derivatives, which allows one
to integrate the trajectory equations. The final location of this
trajectory in the complex plane was noted at the preset arrival
time ta, and the initialx-coordinate was varied to allow the
trajectory to cross the real axis at the arrival time. This is similar
to finding the bifurcation point in the real-valued DPM problem;
however, this calculation must be repeated many times at
different values ofy to define the isochrone. It is also possible
to fit a high-order polynomial to a few data points (once they
have been obtained) to help predict the location of the

Figure 6. CVDPM(n) transmitted probability densities atta ) 1.5 for n ) 2 (red squares), 3 (orange triangles), 4 (blue circles), and grid (black
line): (a) HE Eckart barrier solutions; (b) DT Gaussian solutions. Notice that CVDPM(2) (classical) trajectories capture the essence of the solution.

Figure 7. Classical complex trajectories for the deep tunneling Eckart
barrier scattering problem, with contours of the absolute value of the
complex-extended Eckart potential. Note how the detected transmitted
trajectories with the arrival timeta ) 1.5 (shown in blue) bend away
from the pole on the imaginary axis (atz ) -0.35i) in a manner
reminiscent of Rutherford foil scattering. The green trajectory is also
transmitted, but it is not detected until a timet > 1.5. The red trajectory
is back-scattered from the potential and is undetected atta ) 1.5.
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isochrone.65 In this way, the search procedure could be
automated, but that was not done in this study.

4.3. Classical Complex Trajectories.In this subsection,
some properties of CVDPM(2) trajectories will be explored.
Figure 7 reveals that different initial coordinates may lead to
drastically different effects during the evolution of the complex
trajectories. The potential energy contours show that these
trajectories are interacting with the pole centered aroundz )
-0.35i. The reactive trajectories (in blue) withta ) 1.5 can be
seen deflecting around the top of this pole, while one transmitted
trajectory (green curve) withta > 1.5 skirts around the lower
edge of this pole. A nontransmitted trajectory (red curve) is
also shown. Note how this trajectory appears to enter the barrier
region but is repelled by the pole; this trajectory is unlucky
enough to have initial conditions that lead it directly toward
this pole.

The behavior of these trajectories suggests that a force
analysis of CVDPM(2) trajectories will be instructive. Figure
9a shows two CVDPM(2) trajectories, one transmitted and one
back-scattered for the DT Eckart problem. The arrows represent
the vectors of force,-dV/dz, for the complex-extended Eckart
potential. These trajectories follow classical paths, and it is

interesting to see how they are influenced by the complex-valued
force. Notice that the trajectories follow the lines of force.

To make further progress, we will examine the initial
velocities of the trajectories. This velocity as a function of the
complex position is given by

For the DT case,po ) 0. It is seen that the real part of the
initial velocity wheny ) 0 is just as expected,po/m. Of interest
are both the real and the imaginary parts of the initial velocity.
This equation reveals that trajectories launched from below the
real axis (y < 0) will have a positivex component. For
trajectories initiating to the right of the center of the wave packet
(x > xo), the initial velocity will contain a component in the
positivey direction. Figure 10a shows a plot of eq 44 for the
DT Guassian scattering problem while Figure 10b shows a plot
for the HE Eckart scattering problem. These figures also show
CVDPM(2) and CVDPM(3) isochrones for these scattering

Figure 8. CVDPM(n) isochrones for the arrival timeta ) 1.5: n ) 2 (red squares), 3 (dark green triangles), and 4 (blue circles): (a) DT Eckart
scattering problem; (b) HE Eckart scattering problem. Notice that in both cases the CVDPM(2) isochrones terminate at thex-coordinate of the
initial wave packet,xo, while CVDPM(3) and CVDPM(4) isochrones continue smoothly past this point.
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problems. It is seen that in the regions of interest (near the
isochrones) the resultant initial velocity vector is directed toward
positive x. Overlaying Figures 9 and 10 can help one define
where isochrones might be located, as one can obtain an idea
of the initial impetus each trajectory will have and what forces
will influence its subsequent evolution. In addtion, as seen in
eq 44, trajectories located to the left of the center of the initial
wave packet (for CVDPM(3) and CVDPM(4) trajectories) will
haveViniital that contains a component in the negativey direction.

It is interesting to trace the transmitted trajectory’s path
through this force field knowing that the initial impetus is in
the positivex direction. The transmitted trajectory shows a large
slowdown in thex direction as the trajectory begins to decelerate
in the barrier region. While the trajectory is decelerating in the
x direction, it very quickly accelerates in they direction. This
trajectory is able to circumvent the pole located nearz) -0.35i
by slipping around the top. The reflected trajectory, however,
is not able to do the same. It encounters very large forces
repelling it away from the barrier region, and subsequently this
trajectory reaches a turning point in thex direction and reverses
course. In essence, the pole plays a role similar to that of the
nucleus in the Rutherford foil experimentssome trajectories are
able to skirt above or below the pole (which, of course, will

affect the trajectory’s arrival time), while some trajectories will
aim right for the pole and will subsequently be back-scattered
into the reflected region.

Figure 9b shows the transmitted trajectory from Figure 9a
by plotting both the real and the imaginary parts of the kinetic
energy versus the propagation time on thez-axis. Note that as
the trajectory enters the barrier region (t ≈ 0.25) there is a
decrease in the real kinetic energy and a corresponding increase
in the imaginary kinetic energy (features that can also be seen
in Figure 9a). The real kinetic energy can even be seen to go
negative for 0.75 a.u. To help understand this, we will
decompose the complex-valued kinetic energy into real and
imaginary parts

The real component of the kinetic energy can take on negative
values if |px| < |py|. However, from Figure 9b, when the real
component of the kinetic energy is negative, the imaginary
component of the kinetic energy is positive, indicating thatpx

and py are either both positive or negative values. Figure 9a
reveals that the trajectory is moving in the positivey direction
at this time, thus showing that even when the real kinetic energy
is negative the trajectory is still making progress in the direction
of the positive real axis.

4.4. Quantum Complex Trajectories. Figure 11 shows
trajectories for the HE Gaussian scattering problem as well as
a contour map for the complex-extended Gaussian potential.
The solid red lines indicate third-order trajectories originating
to the left of the wave packet center that cross the real axis
twice. CVDPM(3) trajectories originating on the right of the
wave packet center only exhibit one crossing of the real axis.
CVDPM(3) trajectories originating to the left of the wave packet
center will cross the real axis once at a time (aroundt ) 0.7)
prior to the specified arrival timeta )1.5, then cross the real
axis once more at the specified arrival time. These trajectories
are repelled by a very strong potential energy wall once they
cross the real axis att ) 0.7. This imparts a force in the negative
y direction that induces the second crossing. At both of these
crossing points, the trajectory exhibits a probability density that
matches the exact value of the density at that time and at that
point in space as determined by the grid calculation. Carrying
the integration to later times reveals that these trajectories will
not cross the real axis again, at a time greater thanta ) 1.5, as
there will be no force component to impart an upward motion
to the trajectory (it has already moved beyond the barrier region).
This figure also shows a second-order trajectory that is launched
from an identical position as one of the transmitted third-order
trajectories. Note that it does not approach close to the real axis
on the time scales of interest.

Figure 12a shows the real and imaginary parts of the wave
function plotted againstUI (the imaginary part of the potential)
and the probability density for the CVDPM(2) trajectory plotted
in Figure 11. Figure 12b shows the same, only plotted this time
for the CVDPM(3) trajectory launched with the same initial
conditions as the CVDPM(2) trajectory. Figure 11 showed that
both the CVDPM(3) and the CVDPM(2) trajectories will
transmit the barrier (x > 0), but the CVDPM(2) trajectory will
not be detected because there is no time at whichy ) 0. In the
Appendix it is shown that the real and imaginary parts ofA(z,t)
in the CVDPM(n) equations can be expressed in a form that is
similar to the of RVDPM(n) equations, albeit complex-valued.
The density can be computed at any point through the relation
F(z,t) ) exp(-2/p Im(A(z,t))). The time derivative of the

Figure 9. Classical complex trajectories for the Eckart deep tunneling
case. (a) Transmitted (orange) and reflected (blue) trajectories with force
arrows from the complex-extended Eckart potential surface. The center
of the pole in this potential is denoted by the red dot. The trajectories
follow classical paths through the complex coordinate space. (b) Kinetic
energy profile for the transmitted trajectory in part a. An orange box
denotes the region where the real component of the kinetic energy is
negative.
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imaginary componentA(z,t) (given in the Appendix asG(z,t)),
containing density information, is given by

while the time derivative of the real component ofA(z,t), the
phase of the wave function, is given by

Substituting eq 46 into the expression forF(z,t) yields

Figure 12a illustrates how the real and imaginary parts of the
wave function as well asF(z,t) vary with position versus the
variation inUI.

It is important to note the behavior ofUI in Figures 12a and
12b. The two trajectories start with the same initial position
and for early timesUI are similar for both trajectories. A
difference develops, however, in Figure 12a, aroundx ≈
0.5 a.u. It is noted thatUI changes sign and becomes a positive-
valued function that decays to zero whenx > 1 (away from the
barrier region). It is around this point thatF(z,t) stops declining
and starts to increase. The density computed along this trajectory
remains large and does not decay to the correct value byta )
1.5. In Figure 12b, however,F(z,t) is seen to decay to the value
found on the real axis att ) 1.5. The behavior ofF(z,t) with
respect to that ofUI can be examined with eq 48. IfUI is
positive, then it is serving to increase the value ofF(z,t), while

Figure 10. Initial velocity fields, colored by magnitude, with CVDPM(2) (dashed) and CVDPM(3) (solid) isochrones: (a) deep tunneling problem;
(b) high-energy scattering problem.
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the opposite is true for a negative value forUI, as seen in
Figure 12b. The path of the trajectory through the complex plane
must be chosen such that the integral ofUI cancels just enough
of the integral ofF2 (in eq 46) such that the correct density is
transported by the trajectory when it crosses the real axis at the
arrival time. It is shown in the Appendix that eq 46 reduces to
eq 9 on the real axis. The complex-extended potential is seen
to have a dual role for the CVDPM(n) trajectories. As in
RVDPM(n), the real component of the potential still determines
the motion of the trajectory in thex direction. Likewise, the
imaginary component of the potential will determine the motion
of the trajectory in they direction.

5. Conclusions

Given the appropriate order, RVDPM(n) was shown to be a
quick method for obtaining a very good approximation to
transmission probabilities in barrier scattering problems, includ-
ing the deep tunneling case. Because there are no functional
fittings and very few trajectories are required to evaluate the
bifurcation point, RVDPM(n) yields vast computational savings
over other quantum trajectory methods. RVDPM(n) trajectories
are parallelizable, and RVDPM(n) trajectory results have been
presented for three-dimensional problems.35 There are several
known problems with RVDPM(n), however. High orders of
RVDPM(n) are required in regions where the wave function
develops nodes or in regions of interference. Additionally, the
results may not be very good. In problems where the barrier is
thin compared to the width of the initial wave packet, the
transmitted wave function may not be very accurate. Presently,
there is no way of predicting the best order of RVDPM(n) to
use for a particular barrier scattering problem, though in general
it seems that results for higher-energy problems are very good
with low orders of DPM while deep tunneling problems require
higher orders to produce good transmission probabilities.

CVDPM(n) trajectories very accurately reproduce transmis-
sion probabilities at low orders in both the deep barrier tunneling
and the higher-energy barrier scattering problems for thick
barriers. For both the Eckart and the Gaussian potentials it was
found that CVDPM(3) was sufficient to almost exactly predict
the transmission probability for deep barrier tunneling problems
while CVDPM(2) was sufficient for high-energy scattering
problems. CVDPM(n) demonstrates good convergence proper-

ties on the potential energy surfaces (Eckart and Gaussian) under
study. However, it is not to be expected that this will be true
for every potential energy surface of interestsmore study is
needed in this area. Because CVDPM(n) is just the DPM applied
to the complex-extended quantum Hamilton-Jacobi equations,
CVDPM(n) trajectories will also share the same parallizability
as their RVDPM(n) counterparts. Again, very few CVDPM(n)
trajectories are needed to accurately compute the transmission
probability, and we have recently extended this method to two-
dimensional65 (one translational and one vibrational) barrier
transmission problems.

In all, the greatest difficulty with CVDPM(n) lies in locating
the isochrones from which one obtains the initial spatial
coordinates needed to launch the trajectories. In two dimensions,
this situation becomes worse, as the isochone will become a
surface in four-dimensional space,65 and consequently this makes
location of the initial coordinates much more difficult. Higher-
dimensional problems will introduce even more difficulty into
the isochrone location problem. Also, computation of the
transmission probability at intermediate time steps requires

Figure 11. CVDPM(n) trajectories for the HE Gaussian scattering
problem, with contours of the absolute value of the complex-extended
Gaussian potential. The red lines represent CVDPM(3) trajectories that
exhibit two crossings with the real axis and originate on the left side
of the center of the wave packet. The green line is a CVDPM(2)
trajectory launched from the same initial position as one of the third-
order trajectories.

Figure 12. Imaginary potentialUI (blue) with real (black) and
imaginary (red) parts of the wave function and density (green). (a)
CVDPM(2) trajectory for the HE Guassian barrier scattering problem.
The sign ofUI determines the behavior of the density. A positiveUI

leads to a growing density while a negativeUI forces the density to
decay. (b) CVDPM(3) trajectory. Note how the initial value of the wave
function gradually decreases to the expected value at the arrival
time ta.
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searching for the location of new isochrones. Depending upon
the situation, one may lose much of the computational advantage
in CVDPM(n) through the isochrone location problem. Another
possible problem with CVDPM(n) concerns potentials that do
not have a global analytical function by which to perform the
analytic continuation (ab initio potentials, for example). This
directly impacts situations that will be of interest to the quantum
dynamicist. However, there are methods for numerically con-
structing the analytic continuation of a function given only
discrete data on the real axis, and this problem may prove
tractable. In spite of these issues, CVDPM(n) still proves to be
a very interesting method for computing transmission prob-
abilities.

Further studies are in progress concerning the behavior of
CVDPM(n) trajectories in thick V, thin barrier scattering
problems, as well as more detailed analysis of isochrones.66

Anticipated extensions of CVDPM(n) include collinear reactive
scattering and extension of Wigner trajectories to barrier
scattering problems in complex phase space as well as further
generalization of the method to make it applicable to a wider
range of barrier scattering (even multidimensional) problems.
It is hoped that further examination of the behavior of complex
quantum trajectories will lead to robust and accurate methods
for quickly computing transmission probabilities in quantum
mechanical barrier scattering problems.

Appendix: Correspondence Between RVDPM(n) and
CVDPM(n)

In this appendix, correspondence between the equations of
motion for RVDPM(n) and CVDPM(n) trajectories will be
explored. The guiding principle is that, on the real axis, the
equations for CVDPM(n) should be identical to the equations
provided by RVDPM(n). Equations 1 and 25 describe the same
wave function on the real axis; hence, the arguments in the
exponents should be equal

The complex actionA(x,t) can be decomposed into real and
imaginary parts

Subsituting eq A2 into eq A1 yields the following equations
relating the real-valuedC(x,t) and S(x,t) functions to their
CVDPM(n) counterparts on the real axis

and

Equations A3 and A4 are worth noting. They show that real
component of the complex-valuedA(z,t) can be identified with
theS(x,t) function from RVDPM(n). The imaginary component
of A(z,t) is seen to be proportional to theC-amplitude in
RVDPM(n). Note, however, that these relationships are valid
only on the real axis.

Substituting equation A2 into eq 26 and decomposing the
analytically extended potentialU into real and imaginary parts
U(z) ) UR(z) + iUI(z), whereUR, UI are real-valued functions,
give

where all derivatives are taken with respect to the complex
coordinatez. Separating eq A5 into real and imaginary parts
and substituting eqs A3 and A4 yield two coupled equations

and

These equations can be transformed into the Lagrangian frame
through the use of eq 6. These transformed equations become

and

To make progress, the behavior of eqs A6-A9 on the real axis
must be examined. On the real axis,UI ) 0, andUR will be
equal toV, the real-valued potential. Employing eqs A3 and
A4 in eqs A6-A9 will generate the appropriate equations on
the real axis. This is seen to make the Eulerian equations forS,
eqs A6 and 2, equivalent. Likewise, eqs A7 and 4 will also be
equal. The Lagrangian equations A8 and A9 are also shown to
yield the RVDPM(n) equations on the real axis.

A similar analysis can be carried through for the first two
orders of CVDPM. Eulerian equations forS1 and C1 can be
derived from the CVDPM(1) equation, eq 30, in the same
manner as outlined above. Again, two coupled equations are
obtained, which have the form

and

Lagrangian versions of eqs A10 and A11 are

and

Evaluating the equations on the real axis generates equations
(both Eulerian and Lagrangian) that are equivalent to the
RVDPM(2) equations.

An analysis of CVDPM(2) equations shows the same trend
repeating, and one can derive Lagrangian equations for any order
of CVDPM(n) by using the following equations

C(x,t) + i
p

S(x,t) ) i
h

A(x,t) (A1)

A(z,t) ) F(z,t) + iG(z,t) (A2)

F(x,t) ) S(x,t) (A3)

G(x,t) ) -pC(x,t) (A4)

Ft + iGt ) -UR - 1
2m

(F1
2 + 2iF1G1 - G1

2) +

ip
2m

(F2 + iG2) - iUI (A5)

∂F(z,t)
∂t

) - 1
2m

F1
2 - UR - p

2m
G2 + 1

2m
G1

2 (A6)

∂G(z,t)
∂t

) - 1
2m

[-pF2 + 2F1G1] - UI (A7)

dF(z,t)
dt

) 1
2m

F1
2 - UR - p

2m
G2 + 1

2m
G1

2 (A8)

dG(z,t)
dt

) p
2m

F2 - UI (A9)

∂F1

∂t
) - 1

m
F1F2 - UR,1 - p

2m
G3 + 1

m
G1G2 (A10)

∂G1

∂t
) - 1

2m
[-pF3 + 2F2G1 + 2F1G2] - UI,1 (A11)

dF1

dt
) -UR,1 - p

2m
G3 + 1

m
G1G2 (A12)

dG1

dt
) - 1

2m
[-pF3 + 2F2G1] - UI,1 (A13)
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and

As for CVDPM(0) and CVDPM(1), the only difference between
RVDPM(n) equations and the equations derived from CVDPM-
(n) is the term of the formUI,n/p appearing in theCn equations
and the replacement ofVn by UR,n in theSn equations. Equations
A14 and A15 reduce to eqs 18 and 19, respectively, on the real
axis. Thus, all equations of CVDPM(n) correspond to those of
RVDPM(n) on the real axis, as required.
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