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In this study, an analysis of the one-dimensional Eckart and Gaussian barrier scattering problems is undertaken
using approximate quantum trajectories. Individual quantum trajectories are computed using the derivative
propagation method (DPM). Both real-valued and complex-valued DPM quantum trajectories are employed.
Of interest are the deep tunneling and the higher energy barrier scattering problems in cases in which the
scattering barrier is “thick” by comparison to the width of the initial wave packet. For higher energy scattering
problems, it is found that real-valued DPM trajectories very accurately reproduce the transmitted probability
densities at low orders when compared to large fixed-grid calculations. However, higher orders must be
introduced to obtain good probabilities for deep tunneling problems. Complex-valued DPM is found to
accurately reproduce transmitted probability densities at low order for both the deep tunneling and the higher
energy scattering problems. Of particular note, complex-classical trajectories are found to very nearly give
the exact result for the deep barrier tunneling scattering problem, and the complex DPM converges well at
high orders for these thick barrier scattering problems. A variety of analyses are performed to elucidate the
dynamics of complex-valued DPM trajectories. The complex-extended barrier potentials are examined in
detail, including an analysis of the complex force. Of particular interest are initial conditions for complex-
valued DPM trajectories known as isochrones. All trajectories launched from an isochrone arrive on the real
axis on the transmitted side of the barrier at the same time. The computation and properties of isochrones as
well as the behavior of the initial wave packet in the complex plane are also examined.

1. Introduction guantum wave packets through the use of a correleated ensemble

. . . of Lagrangian trajectories (i.e., the grid points travel along at
Quantum wave packet dynamics can provide con3|derablethe velocity of the probability fluid). The QTM requires the

|nS|ght_|nto prqblems O.f Interest in chemical physics .SUCh aS yse of function fitting (i.e., moving weighted least squares) to
photodissociation, barrier scattering, and femtochemical pro- o\ aate the quantum potential at each update. The QTM was
gessgé.Trad|t|onaIIy, qu.antum wave packet dynamics calcula- extended to barrier scatterifgjhowever, the QTM has stability
tions involved the solution of the time-dependent Sdiger issues when nodes form in the evolving wave packet. Babyuk

equation (TDSE) through the use of fixed grids or basis set and Wyatt worked on addressing the node proBfeéfhand
expansions. Recently, much work has been focused upon the

. . extendin TM to multidimensional reactive scatterin
development and application of nonlocal quantum trajectory g Q g

problemst’—19
methods to these problerfs. . . )
In 1952, David Bohrd* provided a formulation that gave There has been recent work on extending quantum trajectories

e : . to problems with many degrees of freedom. Kendfaksed
deterministic quantum trajectories but at the expense of a _ " - } . . ) .
. : rbitrary LagrangiarEulerian trajectories and artificial viscosity
nonlocal, state-dependent quantum potential. This was base

on a much earlier pilot wave formulation of quantum mechanics 0 stabilize the_ propagating wave packet in barrier scattering
as provided by Madelufigand de Broglié. Holland’8 has processes. This work was subsequently extended to two-

; . - ad dimensional problems by Pauler and Kendfidnd eventually
provided much interpretation and analysis of quantum hydro-

dvnamics. Alternatively. the quantum hvdrodvnamic equations to multidimensional problems as wéfiPoirier and co-workers
y o y.the g y y q have also done much work on the bipolar decomposition of the
of motion can be obtained through a momentum-moment o e . . .
. . S ) . wave function in the reconciliation of semiclassical dynamics
expansion of the Wigner function in phase space. This work is with Bohmian dynamica®-25 Rassolov and GarashcHikave
based upon early studies conducted by TakalPagsighardt y i

and Cederbaum formulated quantum hvdrodvnamic e uationsintroduced an approximate linearized quantum potential into the
) . q y y q hydrodynamic equations of motion. This served to stabilize the
of motion for mixed (and pure) stat@sas well as for coupled

. L . wave function around nodes. Even greater stability was obtained
electronic statek! This formulation has been extended to . - . . .
T by introducing a mixed polar-coordinate space representation
dissipative systems.

. . . . of the wave functiorf” This was successfully extended to
The first viable computational approach to quantum trajectory : :
! ! . nonadiabatic systents.
dynamics, the quantum trajectory method (QTM), was intro-

) The derivative propagation method (DPM) was developed
duced by Lopreore and Wytin 1999. The QTM propagates by Trahan, Hughes, and Wy#tas an alternative way to solve

* Author to whom correspondence should be addressed. Phone: (512)the quamum. hydrqdynamlc equations by propagating mdl\.lldual
471-0238. E-mail: browland@mail.utexas.edu. quantum trajectories (as opposed to the ensemble required by
T Part of the special issue “Robert E. Wyatt Festschrift”. QTM). QTM is an exact formulation of the quantum hydrody-
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namic equations of motiefthe constraining factors on the tational methods, and the model problem involving Eckart and
quality of a QTM calculation are numerical in nature. By treating Gaussian potentials will be discussed. Section 4 presents relevant
these numerical errors carefully one will obtain a solution that results for both DT and HE scattering from Eckart and Gaussian
will be very close to the solution obtained by traditional methods barriers as well as analysis of some complex quantum trajec-
(grid, pseudo-spectral, basis function expansions, etc.). By tories. Finally, concluding remarks will be given in section 5.
contrast, DPM consists of approximate equations of motion, and

it will be seen that increasing the order of the real-valued DPM 2. Theory

does not necessarily lead to the desired convergence properties. 5 1 Real-vValued Quantum Trajectories.In this section,

The DPM was extended to phase-space Wigner trajectoriesihg real-valued DPM equations of motion will be derived and
evolving under various master equations (Liouville, WigRer  giscyssed in both the Eulerian and the Lagrangian frames. A
Moyal, or Caldeira-Leggettj**! and dissipative systents>* discussion of the conservation of weights on real-valued
The real-valued DPM (RVDPMY() produces approximate  q,antum trajectories will follow. Equations for CVDPR)(will
quantum frajectories, but these trajectories are not correlatedye gerived and discussed in subsection 2.2, in both the Eulerian
and can be propagated individually. Low-order DPM was shown 4 the Lagrangian frames. Finally, this section will close with
to very accurately predict transmission probabilities in barrier an analysis of CVDPM(2) trajectories.

scattering calculations in certain cases (when the width of the  £qyations of motion for real-valued quantum trajectories are

scattering potential barrier is greater than the width of the initial optained by first performing a polar decomposition of the wave
wave packet). However, very high orders must be used to obtainnction, via the ansatz

accurate results around nodes, and this presents numerical

problems. By combining the initial value representation with i

the DPM, Bittne?* was able to make observations concerning W(xt) = exp(C(x,t) +y S 1)

the utility of DPM with regards to certain types of problems.

The DPM has be_en extendt_ad to high-dimensionality (10 degrees), eq 1,5(xt) is the real-valued action function, a@{x.) is a

of freedom) barrier scattering problers. real-valued function that is related to wave function density via
Recently, there has been interest in developing solutions to p(x,t) = |y (xt)|? = exp(Z(xt)). Substituting eq 1 into the

the complex-extended Hamilterdacobi equation for quantum TDSE and separating the resulting equation into real and

mechanical problems. For stationary states, Joimtroduced imaginary parts yield two coupled equations. The first is the
complex trajectories in his analysis of the Hamilktalacobi guantum Hamiltor-Jacobi equation

equation. Yang has presented quantum trajectory solutions for

the hydrogen ator#, the electronic spin motioff the harmonic osxt) 1,

oscillator?® and tunneling dynamic®¥.Yang’s solutions, how- ot + fnsl TQt+V=0 @

ever, require an analytic form of the wave packet at each step
and thus are only applicable to situations in which the exact whereQg represents the nonlocal Bohm quantum potential
quantum mechanical solution is known a priori. Recently, Chou
and Wyatt have presented a method for solving the complex h2 ,
Hamilton—Jacobi equation utilizing the Mobius propagation Qg=-— z—m[Cz +C,] ©)
scheme. Excellent results were obtained for one-dimensional
bound stated and scattering problentd3 Boiron and Lom-
bardi** ran complex semiclassical complex trajectories in 1998
that were successfully tested for some analytic as well as oY 1
numerical cases. Recently, Goldfarb, Degani, and Tannor used 0 —[S,+2C,S]=0 (4)
the DPM to solve equations of motion for trajectories that had ot 2m
been extended to the complex pldf&his complex-extended
DPM, denoted as CVDPMJ, was shown to very accurately
reproduce barrier transmission probabilities at low orders, even
for the deep barrier tunneling case. Perhaps the most interesting N
result of this study is that a very good approximation to the aF@t) _ =
deep barrier tunneling probability is obtained with classical aq"
complex trajectories!

In this study, both RVDPM{) and CVDPM@) will be applied whereq = x for real-valued trajectories arp= z for complex-
to model barrier scattering problems employing either an Eckart valued trajectories. These equations are cast in the Eulerian form
or a Gaussian barrier and an initial Gaussian wave packet. The(the grid points are stationary).
initial wave packets in these calculations will have either zero  To obtain equations of motion for trajectories, it will be
initial energy, denoting a deep barrier tunneling problem (DT), necessary to transform the Eulerian equations into the Lagrangian
or an initial energy equal to the barrier height, which is termed frame via the transform
high-energy (HE). Various properties of CVDP rajectories
will then be examined. Of concern here is the method by which d_2o d )
the appropriate initial conditions are chosen, the complex dt ot dg
extension and influence of the potentials, and the behavior of
CVDPM(n) trajectories in the complex plane for several orders wherev is the flow velocity. Taking the de Broglie guidance

The second equation is the continuity equation

In all equations, subscript notation is used for spatial partial
derivatives

n Q)

of DPM. condition,p = S, the flow velocity becomes
In the next section, relevant equations of motion for both
RVDPM(n) and CVDPM¢) trajectories will be presented and Y= i )

discussed. Then, in section 3, implementation issues, compu- m
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Substituting eqs 2 and 4 into eq 6 and using eq 7 yield and
Lagrangian equations for the evolution of the action

dsxt) 1
dt ~ 2m

dc,

1
2 — 2= 2[S,+2C,S,+4C 17
812 _ V_r_;l_rnrcz + 012] (8) dt 2m[ 4 1% 282] ( )

and theC-amplitude Notice the up-coupling to higher-order derivatives in eqs 16

and 17.
dC(xt) 1 Equations 12, 13, 16, and 17 will constitute a closed set of
& ?nsz 9) equations if spatial derivatives of thHeé-amplitude andS of

orders greater than 3 vanish. Following this procedure, Lagrangian

One way to propagate the trajectories described in eqs 8 andequations for any order of real-valued DPM can be obtained
9 is to employ the QTM:13 In essence, this involves the through the following infinite system of equations
propagation of a correlated ensemble of trajectories. At each @
time step, fitting techniques (such as least squares) can be n_ 1 1
employed to compute the spatial derivatives of hand C a Fn[SH" +2(CiS),l + ESlCHn (18)
functions to update the trajectory position and density. In this
way, quantum nonlocality is explicitly introduced into the and
trajectory dynamics. However, as the trajectories evolve, any
semblance of an ordered grid quickly disappears. While suc- dS, 1,5 K2 5 1
cessful in a variety of problems, the QTM is usually compu- Gt — — amct n T 5 Cain T (O = Vo + 25814 (19)
tationally intensive.

Alternatively, the DPM can be used to derive an exact set of To make progress with the infinite hierarchy of equationS,
equations of motion for the spatial derivatives of hendS assume that th€ and S functions are smooth enough to be

functions. The Spatial derivatives 8fandC will be propagated approximated in the V|c|n|ty of a trajectory by polynomials
along individual trajectories, and the need for fitting is removed.

The DPM equations are obtained by spatially differentiating both K

1
sides of each Eulerian equation, eqs 2 and 4: CEy = Z}E c (B (20)
IS, 1 h’ o
ot =T SS+ ?n[cs +2C,CJl -V, (10) and
and -1 K
SED =3 1 S0E (21)
C, 1 =L
Tt om>e TS T 2GS (11)
where& denotes the displacement from a trajectory at time
These equations transform to the Lagrangian frame as Assuming quadratic expansions € L = 2) for bothC andS,
substituting into egs 2, 4, 10, 11, 14, and 15, and letirg O
d_Sl _ h_z[c +2C,C] -V (12) give six coupled equations that are exactly the same as egs 2,
da  2m 3 1 1 4, 10, 11, 14, and 15, only these equations lack spatial
derivatives ofC and S greater than order 2. This shows that
and truncation of the derivative hierarchy is equivalent to assuming
dc some level of polynomial smoothness for tB8eand S fields.
A i[% +2C,S) (13) Lagrangian equations for any RVDPN)(can be obtained by
dt 2m 1

working out the terms in eqs 18 and 19 and setting to zero all
spatial derivatives o6 and theC-amplitude with orders greater
thann.

From the preceding arguments, it is seen that the DPM is a
rgeneralization of earlier studies conducted by Héflen the
use of frozen or thawed Gaussians in time-dependent semiclas-
sical scattering processes, known as Gaussian wave packet
dynamics (GWPD). The difference, however, is that the DPM

The first term on the right-hand side of eq 12 is the Bohm
quantum force;—9Qg/0x. Note that eqs 12 and 13 exhibit both

down-coupling to lower-order derivatives and up-coupling to
higher-order derivatives, making these equations and ones fo
the higher-order derivatives an infinite but exact hierarchy.
Eulerian equations for RVDPM(2) can be derived by taking

the spatial derivative of egs 10 and 11 can approximate th€ and S fields along each trajectory to
3S, 1 . B2 ) quadr_atic and higher orders whereas I—_|e||er’s studi_es employed
i _E(S.Sj—i_ SY) +%[C4+ 2C,°+2C,Cjl -V, (14) equations of motion for parameters in a Gaussian that ap-
proximated the global wave packet. Several methods that employ
and multiple Gaussians propagating along classical trajectories will
also be mentioned. Shalashilin and Child have developed a
aC, 1 method that employs multiple nonorthogonal traveling frozen
s %[84 + 2GS+ 4GS, + 25,Cj (15) Gaussians that are sampled by a Monte Carlo procedute.
This method has been applied to tunneling problémin
These equations transform to the Lagrangian frame as addition, Martinez et &l%52 have developed the multiple
as, L 2 spawning method wherein additional frozen Gaussians following
2 1.2, 107 2 . classical trajectories are used to augment the basis set where
G mz omiCe T 2C T 2CC —V, - (16) they are needed to account for tunneling and nonadiabatic



Analysis of Barrier Scattering

257 Tmitial
Wave Packet-
2_
1,57 a :
1_
051
-09 08 05

X(ta)

Figure 1. Integration of the initial Gaussian wave packet density fity forward yielding an area that is equal to the transmitted probability
density at timet,. The shaded region 8F?(0) represents the starting location of all trajectories that have transmitted the barrier at the arrival time
ta

transitions. Much earlier studies by Metiu et>alinvolved
expansion of the wave packet in a swarm of thawed traveling
Gaussians.

A few comments can be made about RVDPMfajectories.
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transmit the barrier. As shown in Figure 1, there is a definite
bifurcation point for each time such that trajectories initially
launched from the right of the bifurcation point will be

transmitted while trajectories launched from the left will be

First, note that these trajectories can be computed individually, reflected. Integrating the probability density obtained from the

and the need for functional fitting has been circumvented by
propagating the approximate spatial derivative€ ahdSalong
each trajectory. However, due to the up-coupling to higher-

order spatial derivatives in the derivative propagation equations,

the quantum potential will rarely be exactly specified along the
trajectory. Higher orders of RVDPM] bring in improved

initial Gaussian wave packet from this bifurcation point forward
will yield an area that is equivalent to the transmission
probability at that time, in accordance with eq 22. Only a few
transmitted trajectories need to be evaluated to locate the
bifurcation point.

2.2. Complex-Valued Quantum Trajectories.Schralinger

approximations to the quantum potential and allow the trajectory recognized that the actio8 found in the Hamiltor-Jacobi

to “sense” how theC and Sfields are behaving in the vicinity

of the trajectory. In this way, DPM can be thought of as
introducing a regional nonlocality around each propagating
trajectory. However, because the equations of RVDR)Nfe
usually truncated at low order, the reach of this regional
nonlocality is limited. High orders of RVDPM]J are needed

to allow distant features to affect the motion of the approximate
quantum trajectory.

It is not necessary to propagate a large number of trajectories

in a real-valued DPM calculation to obtain the transmission
probability. The time-dependent transmission probabHt)
of a wave packet through a barrier can be obtained via

P(t) = Wi(%(t).t) (22)
i,products
wherew; represents the trajectory weightlefined as
Wi(x(1),t) = p(x(t),)0%; (23)

where 0x represents a volume element. This weight is a
conserved quantit¥$ as required by the continuity equation,
eq 9. Recasting the weights in terms of the initial trajectory
densities yields
Wi(%(1).t) = wi(%(0),0) = p(x(0),0)0% (24)

Substitution of eq 24 into eq 22 immediately shows that
transmission probabilities can be computed only from the initial
wave packet densities if one also knows which trajectories

equation should be regarded as a complex quatttitile was
motivated to make this change in an effort to consolidate both
Sandp into a single function.) Letting = x + iy represent a
point in the complex plane, we can express the complex-valued
wave function in terms of a complex actidiz,t) via the ansatz

W(zt) = exp(rllA(z,t)) (25)

Inserting eq 25 into the TDSE yields a single complex equation

0A(zY) 1
ot 2m

A’+Q.+U=0 (26)
which is a complex version of the quantum Hamilktefacobi
equation. (For an introduction, see section 4.2.3 in Tannor's
text3%) In this equation,Qc represents a nonlocal complex
quantum potential given by

ih

Qc=
The de Broglie guidance condition, eq 7, is assumed valid, thus
making the momentum complekl(z) is the continuation of
the potential to the complex plane. The Lagrangian form of the
complex quantum HamiltonJacobi equation can be obtained
by substituting eq 26 into eq 6 and employing the guidance
condition, thus giving

dA(zt) 1
& =

ih

2m

AP—U+-—A, (28)

" 2m
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In effect, the Lagrangian transformation allows grid points to

Rowland and Wyatt

“classical” potential. Note, however, that eq 28 includes a

travel along complex quantum trajectories. The time-dependentnonlocal quantum energy terfz The CVDPM(2) equation for

wave function evaluated along the trajectory is given by
dA(z7) ]}
e dr

with dA/dt given by eq 28. The density along the trajectory can
be obtained through the relati@fzt) = exp(—2/h Im(A(zt))).
The derivative propagation method will again be employed

W(zt) = exp{;—L[A(zo,O) + [ (29)

Ao

A 1,
@ mfe Y

(35)

includes both local information (from the derivative of the
complex potential) and nonlocal information (through the

to approximately solve eq 26. Note that, as in the real-valued derivative ofA this information is considered to be nonlocal as

case, the evolution equation fArequires the first- and second-
order spatial derivatives ofA to evaluate the expression.

it depends on the state of the entire wave function). This serves
to introduce nonlocality into eq 28 and consequently into

Evolution equations for these functions can be obtained by €d 29, which accumulates the appropriate quantum phase for

taking the first and second spatial derivatives of eq 26

M1 iA
Tt miet oAU (30)

and

9A,

ot

- n%(/‘\zz + A1A3) + % A4 - Uz (31)

wave function synthesis at each time step. In effect, CVDPM-
(2) trajectories are classical trajectories traveling in the complex
plane—quantum information is only manifested thorough the

guantum potential appearing in the action function.

Equation 33 shows that the trajectory will no longer exhibit
classical motion for CVDPM(3), as an approximation to the
guantum force influences the trajectory motion. This has an
interesting effect on the interpretation of tunneling in the
complex plane. CVDPM(2) trajectories are classical in the sense
that only local information provided by the potential is used to

Subsituting egs 30 and 31 into eq 6 and employing the guidancepropagate the trajectory. These trajectories are ones that make

condition give equations of motion in the Lagrangian frame

dA;  in
G omfe T U (32)
and
Fo_ 1,2, 100 \ _
i mA2 +2mA4 U, (33)

The first term on the right-hand side of eq 32 is the complex-
valued and nonlocal quantum forcedQc/dz. This quantum
force is not the same function that appears on the right-han

side of the Bohmian equation, eq 12. For example, the Bohmian

guantum force is anti-Hook's law (linear in displacement from

the center and expansive) for a Gaussian wave packet, but th

force term given by—0Qc/dz vanishes. (Classical trajectories

provide the exact propagation for the packet in the latter

formulation.) The form of the quantum force in eq 32 may be

the prime reason that low-order DPM calculations give excellent
results for some barrier transmission problems (as described late

in this study).

Lagrangian equations of any order can be generated using

the following equation

da,

1 . 1
s En[(Alz)n —ihA ] + aAlAlJrn -U, (34)

It was precisely CVDPM{) that Tannor and co-workeis

employed in their complex-valued trajectory study. A discussion

of the correspondence between RVDR)&nd CVDPM@) is
provided in the Appendix.
A brief examination of eqs 28 and 32 is in order. The right-

hand side of eq 32 represents the components of force actin
upon each trajectory. The local (or classical) force is contained

in the derivative of the potential, while all quantum forces are
represented by the-dependen®s term. Focusing upon second-
order DPM leads to trajectories with purely Newtonian (albeit
complex) motion, as thés-dependent quantum force will be
zero. The trajectory is guided through completely local informa-
tion contained in the derivative of the complex-extended

g

it over the top of the barrierthey do not “go through the
barrier”. However, each CVDPM(2) trajectory is carrying a
density that ultimately will make it to the real axis at the arrival
time and be “detected”. The net effect of this density transport
on the complex-classical trajectory is to make it appear as if
the low-energy initial wave packet “tunnels” through the
classically forbidden region and appears on the transmission
side of the barrier.

Interestingly, the CVDPM(2) equations appeared in the
literature before the recent publication by Tannor et®dh
generalizing earlier work with GWPD, Huber and Heller

dextended the classical trajectories into the complex plane and

in effect generated the equations of motion for CVDPM(2)
trajectories. Subsequent collaboration with Littlejefprovided

edeeper mathematical insight into these trajectories. Again, as

in the case of RVDPM), our formulation has the advantage

in that we approximaté\(zt) in a quadratic or higher-order
expansion along each propagating trajectory, as opposed to a
global “thawed” Gaussian. de Aguiar and co-worReexpanded

Hpon this work by Heller by deriving additional approximations

to replace the complex trajectories with real trajectories. These
studies are semiclassical; it is important to remember that the
infinite heirarchy of DPM equations of motion is exactly
quantum.

3. Model Scattering Problem and Computational
Methods

In this section, the initial wave packet and the two potentials
are described. The implementation of both RVDRM&and
CVDPM(n) trajectories will also be discussed. Finally, for
comparison with the trajectory results, a space-fixed grid method
for solving the TDSE for these scattering problems will be
mentioned. All calculations were run to the arrival tirge=
1.5. Unless otherwise stated, all quantities are in atomic units.

The initial conditions on individual trajectories were deter-
mined from a Gaussian wave packet of the form

w9 = (%) el g2+ Do) (aw)

JT
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Real-Valued Potentials
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Figure 2. Real-valued Eckart (in blue) and Gaussian (in green) potentials used in this study. The magnitude of the initial Gaussian wave function
(solid red) is also shown to compare the relative width of the wave packet to the barrier width. For the purposes of this figure, the peak value for
|W(x)| was adjusted to be the same as the barrier height.

This function is normalized on the real axis. Following Tannor where the barrier height i¥, = 40 and the barrier width
et al.#> we choose the width paramefgr= 30, the center of parameter isx = 4.32 or a slightly slimmer Gaussian barrier
the wave packet, = —0.7, and the initial momentum eithpg of the form

=0 (DT case) or 48.9 (HE case). Initial conditions for complex

trajectories were obtained by analytically continuing eq 36 into V(2) = V, exp(—y7Z) (38)
the complex plane. _ ) _

Obtaining the initial functional values required for the time Where agairvo = 40 and the width parameter js = 15.35.
integration of the RVDPMY) trajectories is straightforward. ~ Both barriers are centeredzt= 0. The two potentials evaluated
Equating the right-hand sides of egs 1 and 36 and separatingP" the real axis are shown in Figure 2, while the real and
into real and imaginary parts lead to functions that give the imaginary parts of the complex-extended Eckart potentials are

initial values ofC(x,t) and S(x.t) in terms of the parameters in ~ Shown in Figures 3a and 3b, and the real and imaginary parts
eq 36 for any given selected initialvalue. of the complex-extended Gaussian potential in Figures 4a and

Obtaining initial functional values for CVDPMJ is a more 4P respectively. o
difficult task. Equating the right-hand sides of eqs 25 and 36 F'gu_fe 2 shows t_hat we are deal_lng with a t.h'Ck barrl_er
leads to a single equation that returns the initial valua(aft) scattering proplem, in that the half-width c_>f the initial Gaussan
with regard to the parameters in eq 36 and the initial coordinate Wave packet is slim compared to the width of the scattering
2. For CVDPM(), one obtains the initial coordinatesby Eckart and Gaussmr_] potentials. T_h|ck barrier quantum scattering
merely discretizing the complex extension of the initial wave proble_m_s typically display transmitted probability de_nsmes that
packet. However, both the real and the imaginary partsaoé are similar to those produced by the propagation of the
discretized to obtain the initial condition. Trajectories with the CcOrresponding Wigner wave packet in phase space with the
same initial real part but different imaginary parts in their classical Liouville equation. Alternatively, one can obtain

complex positions will have drastically different behaviors. The classical transmitted probability densities in phase space by
trajectories of interest will be those that have positjon 0 at integrating the initial Wigner wave packet fpr= py, wherep,
the specified arrival time and > 0 for the transmitted subset. ~'€Présents the barrier momentum. An example of the similarity
The imaginary component of the complex initial position has a of pha;_e:_-spgce classical and quantum barrler_ trans_mlssmn
direct effect on both the time and the position where these probab.|I|t|es IS presentled by Rowla_nd and Wy&ithin barrier
trajectories cross the real axis. The set of initial complex scattering problems will have solutions that depend much more

positionsz that satisfy the above condition will comprise a curve STOngly upon the quantum potential and are not reproduced
in the complex plane called an isochrone. Any trajectory near_ly as well with clas_;smal phase-;pa;ie methods.
launched from an initial position on that isochrone will land Given the CauchyRiemann conditioft for the complex-

somewhere on the real axis ¢ 0,y = 0) at the specified arrival ~ Valuéd functionf(x + iy), i of/ox = of/oy, we can determine
time. Properties of isochrones will be discussed further in section Whether or not the potentials given in eqs 37 and 38 are analytic.
4.2 The Cauchy Riemann condition is seen to hold for the Gaussian

potential in eq 38 in the domain of the finite complex plane.
Hence, this complex-extended potential would be termed
holomorphicé! that is, the potential has no singularities and is
differentiable at every point in the finite complex plane.
V@) = ——— (37) Application of the CauchyRiemann condition to eq 37 shows
cosH(az) that the complex-extended Eckart potential is meromorphic;

The potentials used for both the real and the complex
trajectory calculations are either an Eckart barrier of the form

o
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Real Part of the Complex-Extended Eckart Potential
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Figure 3. Complex-extended Eckart potential: (a) real part; (b) imaginary part.

that is, it is analytic in the finite complex plane at all but some approach this problem is to expand the complex-extended Eckart
isolated points. These isolated points (albeit countably many) potential about a pole using a Laurent seffe&.Laurent series
are the poles of the complex-extended Eckart potential. Thesecan be thought of as an extension of the Taylor series to complex
poles, at the centers of the cloverleafs along the imaginary axisfunctions that are meromorphic. Unlike the Taylor series, which
in Figures 3a and 3b, are located at only employ positive powers in the power series expansion, a
Laurent series may employ negative powers in the expansion
mr .

Z=ZI

(39) )
Q=3 a2 (40)

wherem = +1, £2, ... The two poles of principal interest are e

located atz = +0.3636i. Later, it will be seen that complex

trajectories are forced to avoid the poles in the complex-extended\yhere the expansion coefficients are given by Cauchy’s
Eckart potential. Very interesting behavior is also obtained for integra| formula. Per‘forming a Laurent expansion on eq 37 about

complex trajectories evolving on the complex-extended Gaussianthe node located a, = —ix/20. gives
potential.
An examination into the nature of the poles in the complex- v 1 1 1
extended Eckart potential is in order. Specifically, we would V(z) = — 2 + 3 V, — 1 Vo‘lz(z — 20)2 +

like to examine the behavior of the potential in the vicinity of o (z— 20)2
the pole as well as explain the four-lobed structures and 2\, a4 6
associated signs that appear in Figures 3a and 3b. One way to 189V°a (2= 2"+ 0z~ 7)) (41)
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Figure 4. Complex-extended Gaussian potential: (a) real part; (b) imaginary part.

where the first term in eq 41 is known as the principle part of Plotting the real and imaginary parts of this function will
the function. Notice that a holomorphic function will have no reproduce the four-lobed “quadrapole” structures as well as the
principle part. signs on those lobes in agreement with Figures 3a and 3b.
Determining the order of the pole is a simple matter with A similar analysis can be carried out for the Gaussian
eq 41; all one must do is look to the principle part of the Laurent potential. Making the subsitutian= 1/ in equation eq 38 and
expansion. In this example, we see that the poles of the complex-performing a Taylor series expansion yields
extended Eckart barrier are of second order (this means that
the residue about the poles will be zero); these poles are neither 1 y yz 1
simple poles (poles of order one, also known as removable V( )_>1__2+2_t4 (t_6)
singularities) nor are they essential singularities (which would
have an infinite number of terms in its principle part). The Bearing in mind that ag — +o, t — 0, so the function is not
principle part of the Laurent series describes the behavior of yefined at+e. These will be singularities in the Gaussian
the function in the vicinity of the pole. As one approaclzes  potential. The expansion in eq 43 tells us that these singularities
only the principle part of the expansion contributes, up 0 an | pe jsolated essential singularitiés the principle part of
additive constant. Simply putz ¢ z) = Re’ (the expression jis expansion has an infinite number of terms.
of a complex number in polar form). Combining the above  olomorphic and meromorphic (excluding poles) functions

t (43)

expression with the principle part of eq 41 gives have very interesting properties that cast a different flavor on
CVDPM(n) trajectories. If a functiori(z) is holomorphic both
Vo1 i inside and imple closed in th lex pl
V(z)) = — — = exp(~2i6) (42) inside and on a simple closed contdliin the complex plane,
a then the generalized Cauchy integral formula guarantees the
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existence of the derivatives (including partials) f() of all
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TABLE 1: Transmission Probabilities for RVDPM and

orders®? These derivatives will be continuous both on and inside CVDPM Barrier Scattering Problems

the contourC. No similar statement can be made for real order of DPM probability
functions. DT Eckart Real Valued

The Cauchy integral formula also states that the valuézpf 5 2.79x 1077
at any pointz inside the closed conto® will be determined 6 3.77x 1077
by the values of the function alor@. This is very interesting 7 3.11x 107
in the context of complex DPM trajectories. Complex DPM g gfgi ig7
trajectories can “sense” the behavior of their neighbors through fixed grid (exact) 2.90¢ 107

a regional nonlocality. The potentials and the evolving wave
packet remain holomorphic as long as they stay in the finite

HE Gaussian Real Valued

complex plane (both Eckart and Gaussian potentials) and avoid % 828@1;’8
poles (Eckart potential only). This means that the value of the 4 0.500900
wave packet at any poimtin the complex plane is determined 5 0.487960
solely by the values of the wave packet on a closed contour. In 6 _ 0.419330

fixed grid (exact) 0.502366

other words, the value of the functidfz) depends on informa-
tion at other points (i.e., nonlocality). This may explain why

DT Eckart Complex Valued

low orders of CVDPMN) can yield very accurate barrier g %ggi ig;
transmission probabilites. 4 2.90% 10°7
Equations of motion for both RVDPM} and CVDPM() fixed grid (exact) 2.90< 1077

trajectories were implemented by integrating the system of

HE Gaussian Complex Valued

differential equations in time with the second-order implicit 2 0.503070
trapezoidal metho€f This method is both symmetric and self- 3 0.507320
adjoint, which ensures time reversibility. DPM equations for 4 , 0.501710

ixed grid (exact) 0.502366

barrier scattering problems can become stiff in regions where
the derivatives of the action may become large (i.e., near a pole). ) " . )
Stating that a system of differential equations is stiff generally transmitted densities that are close to'the exact grid solution.
means that the dynamical processes being modeled are evolving” the case of the HE Gaussian scattering problem, orders 2, 3,
under multiple time scale¥.Another way to think of stiffness ~ @nd 4 give results that are in good agreement with the exact
is that the largest allowable step size taken is determined by 9"id results, whether the final probability is computed by actually
the system’s stability rather than the accuracy. The implicit Interpolating the transmitted wave packet density and integrating
trapezoidal method was chosen to integrate this system of©r by locating the bifurcation point and integrating the initial
differential equations because it is a relatively easy method to Probability density. However, it is interesting to see that the
implement and is known to handle stiff systems of differential Probabilities for real-valued DPM do not appear to converge
equations well. Solving this system of nonlinear equations smoothly as the order_ is increased. S|m|lar trends are noted for
requires the use of functional iteration or Newton’s method. In the HE Eckart scattering problem. Figure 5a shows HE Eckart
this study, functional iteration was used with the initial guess ransmitted probability densities for orders 2 and 3 for real-
given by the first-order explicit Euler method. Three functional Valued DPM. RVDPM(2) and RVDPM(3) reproduce the exact
iterations were sufficient at each time step. In both RVDRM( ~ 9rid solution. As the order of the DPM is increased to orders 4
and CVDPM(), the integration time step wast = 1 x 1074, and 5, the_ mtegrated_ _p_robablllt_|es correqund quite well _W|th
To solve the TDSE on a gritf;55the method of line® was the numerical propabllltles p_rowded by the flxed-glrld solution.
employed with fourth order centered finite differencing to obtain Thg DT G.au55|an Sca“e”"g problem Sh,OWS different char-
a system of differential equations that was integrated using the acteristics. First, accurate solutions require higher orders of DP_M
second-order leapfrog meth64The leapfrog method is not ~ than the corresponding HE case. Figure 5b shows DT Gaussian
symplectic, however. This was not a problem in this study, as ransmitted probability densities for orders 82 of RVDPM.
the normalization on the entire grid remained accurate t§ 10 1 here appears to be an oscillation about an average value, with
for the length of the calculation. The grid calculation used to €Ven orders of RVDPM slightly overestimating the probability

solve the TDSE was performed witkt = 1 x 104 andAx = and odd orders being just about right. _
5 % 1073, Figures 6a and 6b show corresponding CVDRM(ansmit-

ted probability densities for orders 2, 3, and 4 for the same
scattering problems as presented in Figures 5a and 5b. Initial
positions for these trajectories are specifically chosen so that
4.1. Transmission Probabilities.In this section, transmission  they transmit the barriex(> 0) and are detectablg & 0) at
probabilities will be presented for RVDPM)Yand CVDPM(Q) the arrival timet, = 1.5. Figure 6a shows the transmitted
trajectories for both the Eckart and the Gaussian barrier densities for the HE Eckart barrier scattering problem for orders
scattering problems. This will be followed by results and 2-4. This figure shows that orders 2, 3, and 4 perfectly capture
discussion for classical complex trajectories (CVDPM(2)). the grid solution, with no detectable decay in the quality of
Determining how initial conditions are implemented into solution. Figure 6b shows the transmitted densities for the DT
CVDPM(n) is discussed in subsection 4.2. Finally, some Gaussian barrier scattering problem for orderst2Note that
interesting properties of complex quantum trajectories will be orders 3 and 4 capture the solution exactly. Although CVDPM-
explored. (2) does not quite capture the exact solution, we need to recall
Table 1 lists transmission probabilities for real-valued DPM that CVDPM(2) trajectories are in fact complex-valued classical
trajectories for the DT Eckart and HE Gaussian scattering trajectories transporting an approximate quantum action function
problems. There are some points of note here. First, it appears(through the inclusion of the nonlocal term in eq 28). In essence,
that the appropriate order of real-valued DPM can give these trajectories appear to tunnel through the barrier, when in

4. Computational Results
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Figure 5. RVDPM(n) transmitted probability densities &t= 1.5: (a) HE Eckart barrier densities for= 2 (blue), 3 (red), and grid (dark green)
solutions; (b) DT Gaussian densities for= 8 (orange), 9 (green), 10 (red), 11 (purple), 12 (brown), and grid (dark blue).

reality they are following classically proscribed paths through orders 2, 3, and 4. Notice that the isochrones traverse only a
the complex plane while transporting approximate quantum small portion of the complex plane. The order 2 isochrone
density. Increasing CVDPM to order 3 adds an approximation converges on thg-coordinate of the center of the initial wave
to the quantum force to the classical force when computing the packet k. = —0.7) but does not extend to valuesyothat are
trajectory. Note that the CVDPM] solutions remain in less than this. This point represents the initial coordinate of the
agreement with the grid solution through order 4. Similar last detectable, transmitted complex trajectory. Increasing the
accuracies and trends are noted in the DT Eckart problem andorder to CVDPM(3) changes the isochrone in two ways. First,
in the HE Gaussian problem. CVDPN)(was run through order  each point is shifted down in the imaginary direction. Since
6 for these four problems with no decay in the solution quality. these trajectories will be traveling farther than corresponding
4.2. IsochronesFigure 7 shows nine CVDPM(2) trajectories CVDPM(2) trajectories and they still need to reach the real axis
(blue curves) for the arrival tim&, = 1.5. Also shown are  at t; = 1.5, they need to traverse this distance faster. To
contour lines for the absolute value of the complex-extended understand this further, one must understand how the real and
Eckart potential. These trajectories are launched from a curveimaginary components of the complex-extended potential are
in the complex planethe isochrone. Some of the characteristics manifesting themselves upon the trajectory, which will be
of isochrones will now be considered. Figure 8a shows the examined later in subsection 4.4. Second, unlike CVDPM(2)
isochrones for the DT Eckart scattering problem for CVDBM(  trajectories, it is seen that higher-order isochrones extend to the
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Figure 6. CVDPM(n) transmitted probability densities &t= 1.5 forn = 2 (red squares), 3 (orange triangles), 4 (blue circles), and grid (black
line): (a) HE Eckart barrier solutions; (b) DT Gaussian solutions. Notice that CVDPM(2) (classical) trajectories capture the essence ofrthe solutio

CVDPM(2) Trajectorles for Eckart Barrier Scattering t= 1.5 Figure 8b shows similar behavior to that found in Figure 8a,
but for HE scattering from the Eckart barrier. It is interesting
to note that all three isochrones converge on the real axis, but
at different locations. CVDPM(2) trajectories exhibit the same
convergence at the center of the wave packet as seen for the
DT Eckart scattering problem in Figure 8a. CVDPM(3) and
CVDPM(4) lead to very nearly the same isochrone. Isochrones
for initial energies between DT and HE barrier scattering will
lie between these extremes. Isochrones for both the DT and the
HE Gaussian barrier problems show similar placements and
trends as the Eckart cases. It is interesting to note that the
isochrones appear to converge for orders 3 or 4 for all cases.

0.5 Obtaining the locations of the isochrones proves to be the
— most difficult part of implementing CVDPMY. Initial coor-

ks EOh 2 i 0 = = dinates were obtained by taking a slice for a constant value for

x y and selecting to be between 0 ankh. This will yield initial

Figure 7. Classical complex trajectories for the deep tunneling Eckart \,g)yes forA(zt) and its spatial derivatives, which allows one
barrier scattering problem, with contours of the absolute value of the to integrate the trajectory equations. The final location of this
complex-extended Eckart potential. Note how the detected transmitted |~ . . ’ .
trajectories with the arrival timé, = 1.5 (shown in blue) bend away  trajectory in the complex plane was noted at the preset arrival
from the pole on the imaginary axis (at= —0.35i) in a manner time t;, and the initialx-coordinate was varied to allow the
reminiscent of Rutherford foil scattering. The green trajectory is also trajectory to cross the real axis at the arrival time. This is similar
transmitted, but it is not detected until a timne 1.5. The red trajectory to finding the bifurcation point in the real-valued DPM problem;

0.0

-0.1 -

-0.2 -

=0.3 -

_0.4

is back-scattered from the potential and is undetectdgl=atl.5. however, this calculation must be repeated many times at
left of the center of the initial wave packet. These trajectories different values ofy to define the isochrone. It is also possible
have different properties than those launched with —0.7. to fit a high-order polynomial to a few data points (once they

These trajectories will be analyzed further in subsection 4.4. have been obtained) to help predict the location of the
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CVDPM Isochrones for DT Gaussian Barrier Scattering
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Figure 8. CVDPM(n) isochrones for the arrival timg = 1.5: n = 2 (red squares), 3 (dark green triangles), and 4 (blue circles): (a) DT Eckart
scattering problem; (b) HE Eckart scattering problem. Notice that in both cases the CVDPM(2) isochrones terminatecatrtieate of the
initial wave packetx,, while CVDPM(3) and CVDPM(4) isochrones continue smoothly past this point.

isochroné®® In this way, the search procedure could be interesting to see how they are influenced by the complex-valued
automated, but that was not done in this study. force. Notice that the trajectories follow the lines of force.

4.3. Classical Complex Trajectories.In this subsection, To make further progress, we will examine the initial
some properties of CVDPM(2) trajectories will be explored. velocities of the trajectories. This velocity as a function of the
Figure 7 reveals that different initial coordinates may lead to complex position is given by
drastically different effects during the evolution of the complex
trajectories. The potential energy contours show that these i 1P, P 2K
trajectories are interacting with the pole centered arauird Unital(d) = — E(—Zﬁ(z— Xo) + W) = (ﬁ - _méy) +
—0.35i. The reactive trajectories (in blue) with— 1.5 can be . 2R
seen deflecting around the top of this pole, while one transmitted : W(X %) (44)
trajectory (green curve) withy, > 1.5 skirts around the lower
edge of this pole. A nontransmitted trajectory (red curve) is For the DT casep, = 0. It is seen that the real part of the
also shown. Note how this trajectory appears to enter the barrierinitial velocity wheny = 0 is just as expecteg@,/m. Of interest
region but is repelled by the pole; this trajectory is unlucky are both the real and the imaginary parts of the initial velocity.
enough to have initial conditions that lead it directly toward This equation reveals that trajectories launched from below the
this pole. real axis ¢ < 0) will have a positivex component. For

The behavior of these trajectories suggests that a forcetrajectories initiating to the right of the center of the wave packet
analysis of CVDPM(2) trajectories will be instructive. Figure (X > Xo), the initial velocity will contain a component in the
9a shows two CVDPM(2) trajectories, one transmitted and one positivey direction. Figure 10a shows a plot of eq 44 for the
back-scattered for the DT Eckart problem. The arrows representDT Guassian scattering problem while Figure 10b shows a plot
the vectors of force;-dV/dz, for the complex-extended Eckart  for the HE Eckart scattering problem. These figures also show
potential. These trajectories follow classical paths, and it is CVDPM(2) and CVDPM(3) isochrones for these scattering
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Force Vectors with Eckart Trajectories

affect the trajectory’s arrival time), while some trajectories will
aim right for the pole and will subsequently be back-scattered
into the reflected region.

Figure 9b shows the transmitted trajectory from Figure 9a
by plotting both the real and the imaginary parts of the kinetic
energy versus the propagation time on #hexis. Note that as
the trajectory enters the barrier region~ 0.25) there is a
decrease in the real kinetic energy and a corresponding increase
in the imaginary kinetic energy (features that can also be seen
in Figure 9a). The real kinetic energy can even be seen to go
negative for 0.75 a.u. To help understand this, we will
decompose the complex-valued kinetic energy into real and
imaginary parts

(a)

2_

_(ptip) py
=R

2
KE B 4 iBd (45)
m

2m
The real component of the kinetic energy can take on negative
values if|py| < |pyl. However, from Figure 9b, when the real
component of the kinetic energy is negative, the imaginary
component of the kinetic energy is positive, indicating that
and py are either both positive or negative values. Figure 9a
reveals that the trajectory is moving in the positivdirection

at this time, thus showing that even when the real kinetic energy
is negative the trajectory is still making progress in the direction
of the positive real axis.

4.4, Quantum Complex Trajectories. Figure 11 shows
trajectories for the HE Gaussian scattering problem as well as
a contour map for the complex-extended Gaussian potential.
The solid red lines indicate third-order trajectories originating
to the left of the wave packet center that cross the real axis
twice. CVDPM(3) trajectories originating on the right of the
wave packet center only exhibit one crossing of the real axis.
CVDPM(3) trajectories originating to the left of the wave packet

Figure 9. Classical complex trajectories for the Eckart deep tunneling Ce_nter will cross .the real_ axis once at a time (arourd0.7)
case. (a) Transmitted (orange) and reflected (blue) trajectories with force Prior to the specified arrival timé =1.5, then cross the real
arrows from the complex-extended Eckart potential surface. The centeraxis once more at the specified arrival time. These trajectories
of the pole in this potential is denoted by the red dot. The trajectories are repelled by a very strong potential energy wall once they
follow classical paths through the complex coordinate space. (b) Kinetic cross the real axis &t= 0.7. This imparts a force in the negative
energy profile for the transmitted trajectory in part a. An orange box y girection that induces the second crossing. At both of these
gggg}ﬁthe region where the real component of the kinetic energy is crossing points, the trajectory exhibits a probability density that
matches the exact value of the density at that time and at that
problems. It is seen that in the regions of interest (near the point in space as determined by the grid calculation. Carrying
isochrones) the resultant initial velocity vector is directed toward the integration to later times reveals that these trajectories will
positive x. Overlaying Figures 9 and 10 can help one define not cross the real axis again, at a time greater thanl.5, as
where isochrones might be located, as one can obtain an ideahere will be no force component to impart an upward motion
of the initial impetus each trajectory will have and what forces to the trajectory (it has already moved beyond the barrier region).
will influence its subsequent evolution. In addtion, as seen in This figure also shows a second-order trajectory that is launched
eq 44, trajectories located to the left of the center of the initial from an identical position as one of the transmitted third-order
wave packet (for CVDPM(3) and CVDPM(4) trajectories) will  trajectories. Note that it does not approach close to the real axis
haveuiiial that contains a component in the negagndrection. on the time scales of interest.

15
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It is interesting to trace the transmitted trajectory’s path
through this force field knowing that the initial impetus is in
the positivex direction. The transmitted trajectory shows a large
slowdown in thex direction as the trajectory begins to decelerate
in the barrier region. While the trajectory is decelerating in the
x direction, it very quickly accelerates in tlyedirection. This
trajectory is able to circumvent the pole located rear—0.35i

by slipping around the top. The reflected trajectory, however,

Figure 12a shows the real and imaginary parts of the wave
function plotted againgdt, (the imaginary part of the potential)
and the probability density for the CVDPM(2) trajectory plotted
in Figure 11. Figure 12b shows the same, only plotted this time
for the CVDPM(3) trajectory launched with the same initial
conditions as the CVDPM(2) trajectory. Figure 11 showed that
both the CVDPM(3) and the CVDPM(2) trajectories will
transmit the barrierd(> 0), but the CVDPM(2) trajectory will

is not able to do the same. It encounters very large forces not be detected because there is no time at wireh0. In the
repelling it away from the barrier region, and subsequently this Appendix it is shown that the real and imaginary part&\t)

trajectory reaches a turning point in tkeirection and reverses

in the CVDPM§) equations can be expressed in a form that is

course. In essence, the pole plays a role similar to that of the similar to the of RVDPMI) equations, albeit complex-valued.

nucleus in the Rutherford foil experimersome trajectories are
able to skirt above or below the pole (which, of course, will

The density can be computed at any point through the relation
o(zt) = exp(2/A Im(A(zt))). The time derivative of the
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Figure 10. Initial velocity fields, colored by magnitude, with CVDPM(2) (dashed) and CVDPM(3) (solid) isochrones: (a) deep tunneling problem;

(b) high-energy scattering problem.

imaginary componeri(zt) (given in the Appendix a&(zt)),
containing density information, is given by

dG(zt) _ h

dt 2m

F,—U, (46)

while the time derivative of the real componentAlfzt), the
phase of the wave function, is given by

drF(zt) 1 h 1 2
it _2_mF1 Ug %Gz—i—%Gl (47)
Substituting eq 46 into the expression fgzt) yields
_ 1 pt 2 pt
o(zt) = exp(— LRty 1y dt) (48)

Figure 12a illustrates how the real and imaginary parts of the
wave function as well ag(zt) vary with position versus the
variation inU,.

It is important to note the behavior &f; in Figures 12a and
12b. The two trajectories start with the same initial position
and for early timesU, are similar for both trajectories. A
difference develops, however, in Figure 12a, around-

0.5 a.u. Itis noted thatl, changes sign and becomes a positive-
valued function that decays to zero wher 1 (away from the
barrier region). It is around this point thez,t) stops declining

and starts to increase. The density computed along this trajectory
remains large and does not decay to the correct valug by

1.5. In Figure 12b, howevep(zt) is seen to decay to the value
found on the real axis dat= 1.5. The behavior op(zt) with
respect to that ofJ, can be examined with eq 48. U, is
positive, then it is serving to increase the valugt), while
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Imaginary Potential for HE CVDPM(2) Trajectory
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Figure 11. CVDPM(n) trajectories for the HE Gaussian scattering 02 00 02 04 06 08 10 12 14 186
problem, with contours of the absolute value of the complex-extended X
Gaussian potential. The red lines represent CVDPM(3) trajectories that
exhibit two crossings with the real axis and originate on the left side
of the center of the wave packet. The green line is a CVDPM(2 . ) :
trajectory launched from thepsame initial gosition as one of the thi(rd)- imeginary Polential &y HE GVDEM(S) Trajectory
order trajectories. 104
(b) &
the opposite is true for a negative value 1dr, as seen in 1
Figure 12b. The path of the trajectory through the complex plane el
must be chosen such that the integralpttancels just enough 44
of the integral off, (in eq 46) such that the correct density is 2]
transported by the trajectory when it crosses the real axis at the ]
arrival time. It is shown in the Appendix that eq 46 reduces to O+
eq 9 on the real axis. The complex-extended potential is seen 2+
to have a dual role for the CVDPMY) trajectories. As in ]
RVDPM(n), the real component of the potential still determines 1
the motion of the trajectory in the direction. Likewise, the ]
imaginary component of the potential will determine the motion -8
of the trajectory in they direction. o d e ;

LR e R RN T NN T T R S et
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5. Conclusions X

Figure 12. Imaginary potentialU, (blue) with real (black) and

uick method for obtaining a verv qood approximation to imaginary (red) parts of the wave function and density (green). (a)
d 9 y 9 P CVDPM(2) trajectory for the HE Guassian barrier scattering problem.

Fransmission probab@lities in barrier scattering problems, inc[ud- The sign ofU; determines the behavior of the density. A positivie

ing the deep tunneling case. Because there are no functionalgays to a growing density while a negative forces the density to
fittings and very few trajectories are required to evaluate the decay. (b) CVDPM(3) trajectory. Note how the initial value of the wave
bifurcation point, RVDPMJ) yields vast computational savings function gradually decreases to the expected value at the arrival
over other quantum trajectory methods. RVDPM(ajectories time ta.

are parallelizable, and RVDPMY) trajectory results have been
presented for three-dimensional probleth§here are several

Given the appropriate order, RVDPN)(was shown to be a

ties on the potential energy surfaces (Eckart and Gaussian) under
known problems with RVDPM(), however. High orders of  study. However, it is not to be expected that this will be true
RVDPM(n) are required in regions where the wave function for every potential energy surface of interestore study is
develops nodes or in regions of interference. Additionally, the needed in this area. Because CVDRMS just the DPM applied
results may not be very good. In problems where the barrier is to the complex-extended quantum Hamiltelacobi equations,
thin compared to the width of the initial wave packet, the CVDPM(n) trajectories will also share the same parallizability
transmitted wave function may not be very accurate. Presently, as their RVDPM() counterparts. Again, very few CVDPNMY
there is no way of predicting the best order of RVDRIM( trajectories are needed to accurately compute the transmission
use for a particular barrier scattering problem, though in general probability, and we have recently extended this method to two-
it seems that results for higher-energy problems are very gooddimensiondl® (one translational and one vibrational) barrier
with low orders of DPM while deep tunneling problems require transmission problems.
higher orders to produce good transmission probabilities. In all, the greatest difficulty with CVDPM) lies in locating
CVDPM(n) trajectories very accurately reproduce transmis- the isochrones from which one obtains the initial spatial
sion probabilities at low orders in both the deep barrier tunneling coordinates needed to launch the trajectories. In two dimensions,
and the higher-energy barrier scattering problems for thick this situation becomes worse, as the isochone will become a
barriers. For both the Eckart and the Gaussian potentials it wassurface in four-dimensional spatand consequently this makes
found that CVDPM(3) was sufficient to almost exactly predict location of the initial coordinates much more difficult. Higher-
the transmission probability for deep barrier tunneling problems dimensional problems will introduce even more difficulty into
while CVDPM(2) was sufficient for high-energy scattering the isochrone location problem. Also, computation of the
problems. CVDPM() demonstrates good convergence proper- transmission probability at intermediate time steps requires
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searching for the location of new isochrones. Depending upon
the situation, one may lose much of the computational advantage
in CVDPM(n) through the isochrone location problem. Another
possible problem with CVDPM concerns potentials that do
not have a global analytical function by which to perform the o )
analytic continuation (ab initio potentials, for example). This Where all derivatives are taken with respect to the complex
directly impacts situations that will be of interest to the quantum coordinatez. Separating eq A5 into real and imaginary parts
dynamicist. However, there are methods for numerically con- and substituting eqs A3 and A4 yield two coupled equations

Fo+ G = —Ug = o (Fi2 + 2IF,Gy — G +

D (F,+iG) — iUy (A5)

structing the analytic continuation of a function given only

discrete data on the real axis, and this problem may prove

tractable. In spite of these issues, CVDRIMtill proves to be
a very interesting method for computing transmission prob-
abilities.

Further studies are in progress concerning the behavior of

CVDPM(n) trajectories in thickv, thin barrier scattering
problems, as well as more detailed analysis of isochréhes.
Anticipated extensions of CVDPMY) include collinear reactive
scattering and extension of Wigner trajectories to barrier

scattering problems in complex phase space as well as further

generalization of the method to make it applicable to a wider
range of barrier scattering (even multidimensional) problems.
It is hoped that further examination of the behavior of complex

FEY) 1 _, h 1 5

o %Fl Uy %Gzﬁ-%Gl (AB)
and

o0G(zt)

= — SL[-hF, + 2F,G] - U, (A7)

ot

These equations can be transformed into the Lagrangian frame
through the use of eq 6. These transformed equations become

quantum trajectories will lead to robust and accurate methods 5

for quickly computing transmission probabilities in quantum
mechanical barrier scattering problems.

Appendix: Correspondence Between RVDPM{) and
CVDPM(n)

dF(zt) 1 A 1
dt :%Flz_ UR_ﬁGﬁ%GE (A8)
dG(zt) h
. am2 Y (A9)

To make progress, the behavior of eqsA% on the real axis

In this appendix, correspondence between the equations ofMust be examined. On the real axi$, = 0, andUg will be

motion for RVDPMf) and CVDPMQ) trajectories will be
explored. The guiding principle is that, on the real axis, the
equations for CVDPM{) should be identical to the equations
provided by RVDPM(). Equations 1 and 25 describe the same

equal toV, the real-valued potential. Employing eqs A3 and
A4 in eqs A6-A9 will generate the appropriate equations on
the real axis. This is seen to make the Eulerian equationS for

egs A6 and 2, equivalent. Likewise, eqs A7 and 4 will also be

wave function on the real axis; hence, the arguments in the €qual. The Lagrangian equations A8 and A9 are also shown to

exponents should be equal

Cxt) + # Sxt) = lh A.) (A1)

The complex actiorA(x,t) can be decomposed into real and
imaginary parts

A(zt) = F(zt) +iG(zt) (A2)
Subsituting eq A2 into eq Al yields the following equations
relating the real-valuedC(xt) and S(x,t) functions to their
CVDPM(n) counterparts on the real axis

F(xt) = S(xt) (A3)

and

G(x,t) = —hC(x,t) (A4)
Equations A3 and A4 are worth noting. They show that real
component of the complex-valuéqzt) can be identified with
the S(x,t) function from RVDPM§@). The imaginary component
of A(zt) is seen to be proportional to th&-amplitude in
RVDPM(n). Note, however, that these relationships are valid
only on the real axis.

Substituting equation A2 into eq 26 and decomposing the
analytically extended potentiél into real and imaginary parts
U(2 = Ur(2) + iU,(2), whereUg, U, are real-valued functions,
give

yield the RVDPM§g) equations on the real axis.

A similar analysis can be carried through for the first two
orders of CVDPM. Eulerian equations f& and C; can be
derived from the CVDPM(1) equation, eq 30, in the same
manner as outlined above. Again, two coupled equations are
obtained, which have the form

oF, 1 A 1

W: _mFle - UR,l_ %GS—FEG]_GZ (Alo)
and

Fle

= — SR+ 2,6+ 2F,G) — Uy, (ALD)

Lagrangian versions of eqs A10 and A1l are

dF, h 1
i = "VYr1~ om G;+ m G,G, (A12)
and
dG, 1
T = — ﬁ[_hF?’ + ZFZG]] - U|’1 (Al3)

Evaluating the equations on the real axis generates equations
(both Eulerian and Lagrangian) that are equivalent to the
RVDPM(2) equations.

An analysis of CVDPM(2) equations shows the same trend
repeating, and one can derive Lagrangian equations for any order
of CVDPM(n) by using the following equations
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aG, 1 1

E - ?n[_hFZ-%—n + 2(Gl':l)n] + a FnG:L+n - Ul,n (A14)
and

dF 1 1

d_tn = En(Flz)n + En[_hGZ-%—n + (Glz)n] -

1
UR,n + a F1F1+n (A15)

As for CVDPM(0) and CVDPM(1), the only difference between
RVDPM(n) equations and the equations derived from CVDPM-
(n) is the term of the fornJ, /A appearing in th&, equations
and the replacement &f, by Ugrj in the S, equations. Equations

Al4 and A15 reduce to egs 18 and 19, respectively, on the real

axis. Thus, all equations of CVDPM) correspond to those of
RVDPM(n) on the real axis, as required.
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